Hyperparameters#

The hyperparameters were tuned for 3 different setups for BPR-Max and Cross-Entropy respectively. We select the best performing setup with the best hyperparameters (1-1 for both BPR-Max and Cross-Entropy), and use it in our experiments.

Fixed Hyperparameters#

The setups are defined by setting the constrained_embedding and embedding parameters to one of the following combinations:

Setups#

Setup

constrained_embedding

embedding

setup 1

True

0

setup 2

False

0

setup 3

False

matching layers

And by fixing the following hyperparameters:

Fixed hyperparameters#

parameter

value

loss

bpr-max

logq

0

n_sample

2048

adapt

adagrad

n_epochs

10

Fixed hyperparameters#

parameter

value

loss

cross-entropy

final_act

softmax

logq

1

bpreg

0

n_sample

2048

adapt

adagrad

n_epochs

10

Optimized Hyperparameters#

For each setup the following hyperparameters are optimized:

Optimized hyperparameters#

parameter

type

range

step

scale

layers

int

[64..512]

32

Uniform

batch_size

int

[32..256]

16

Uniform

learning_rate

float

[0.01..0.25]

0.005

Uniform

dropout_p_embed

float

[0.0..0.5]

0.05

Uniform

dropout_p_hidden

float

[0.0..0.7]

0.05

Uniform

momentum

float

[0.0..0.9]

0.05

Uniform

sample_alpha

float

[0.0..1.0]

0.1

Uniform

bpreg

float

[0.0..2.0]

0.05

Uniform

final_act

categorical

options: [elu-0.5,elu-1,linear]

Optimized hyperparameters#

parameter

type

range

step

scale

layers

int

[64..512]

32

Uniform

batch_size

int

[32..256]

16

Uniform

learning_rate

float

[0.01..0.25]

0.005

Uniform

dropout_p_embed

float

[0.0..0.5]

0.05

Uniform

dropout_p_hidden

float

[0.0..0.7]

0.05

Uniform

momentum

float

[0.0..0.9]

0.05

Uniform

sample_alpha

float

[0.0..1.0]

0.1

Uniform