Retailrocket#

The dataset consists of view, add to cart, and transaction events collected over 4.5 months. We only keep the view events. The dataset was published to motivate research in the field of recommender systems.

GRU4REC-pytorch#

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1224

0.1224

0.3196

0.1928

0.4181

0.2060

0.5187

0.2131

GRU4Rec Official

GRU4REC-pytorch params

0.0560

0.0560

0.1595

0.0916

0.2294

0.1009

0.3142

0.1067

GRU4REC-pytorch

OOB

0.0096

0.0096

0.0355

0.0184

0.0544

0.0210

0.0794

0.0227

GRU4REC-pytorch

OOB Correct Eval

0.0406

0.0406

0.1341

0.0728

0.1933

0.0807

0.2528

0.0848

GRU4REC-pytorch

Correct full

0.0456

0.0456

0.1443

0.0804

0.1976

0.0875

0.2554

0.0916

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1150

0.1150

0.3026

0.1814

0.4019

0.1947

0.4953

0.2012

GRU4Rec Official

GRU4REC-pytorch params

0.0578

0.0578

0.1681

0.0955

0.2441

0.1056

0.3378

0.1121

GRU4REC-pytorch

OOB

0.0479

0.0479

0.0561

0.0511

0.0590

0.0515

0.0616

0.0517

GRU4REC-pytorch

OOB Correct Eval

0.0510

0.0510

0.0582

0.0539

0.0607

0.0543

0.0642

0.0545

GRU4REC-pytorch

Correct full

0.0492

0.0492

0.1544

0.0858

0.2163

0.0941

0.2812

0.0986

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

GRU4REC-pytorch params

-54.23%

-54.23%

-50.10%

-52.48%

-45.13%

-51.04%

-39.41%

-49.92%

GRU4REC-pytorch

OOB

-92.12%

-92.12%

-88.90%

-90.45%

-86.99%

-89.83%

-84.69%

-89.36%

GRU4REC-pytorch

OOB Correct Eval

-66.88%

-66.88%

-58.06%

-62.23%

-53.78%

-60.84%

-51.27%

-60.18%

GRU4REC-pytorch

Correct full

-62.76%

-62.76%

-54.84%

-58.30%

-52.74%

-57.52%

-50.76%

-57.01%

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

GRU4REC-pytorch params

-49.71%

-49.71%

-44.43%

-47.36%

-39.25%

-45.78%

-31.79%

-44.32%

GRU4REC-pytorch

OOB

-58.36%

-58.36%

-81.47%

-71.82%

-85.31%

-73.53%

-87.55%

-74.30%

GRU4REC-pytorch

OOB Correct Eval

-55.66%

-55.66%

-80.76%

-70.27%

-84.90%

-72.13%

-87.05%

-72.91%

GRU4REC-pytorch

Correct full

-57.19%

-57.19%

-48.99%

-52.73%

-46.19%

-51.69%

-43.23%

-51.02%

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4REC-pytorch

GRU4REC-pytorch

GRU4REC-pytorch

Variant

Best params

GRU4REC-pytorch params

OOB

OOB Correct Eval

Correct full

loss

bpr-max

bpr-max

bpr-max

bpr-max

bpr-max

optim

adagrad

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

False

embedding

0

224

224

224

224

final_act

elu-0.5

elu-0.5

elu-0.5

elu-0.5

elu-0.5

layers

224

224

224

224

224

batch_size

80

80

80

80

80

dropout_p_embed

0.5

0.5

N/A

N/A

0.5

dropout_p_hidden

0.05

0.05

N/A

N/A

0.05

learning_rate

0.05

0.05

0.05

0.05

0.05

momentum

0.4

0

N/A

N/A

N/A

n_sample

2048

0

N/A

N/A

N/A

sample_alpha

0.4

0

N/A

N/A

N/A

bpreg

1.95

0

N/A

N/A

N/A

logq

0

0

N/A

N/A

N/A

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4REC-pytorch

GRU4REC-pytorch

GRU4REC-pytorch

Variant

Best params

GRU4REC-pytorch params

OOB

OOB Correct Eval

Correct full

loss

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

False

embedding

0

192

192

192

192

final_act

softmax

softmax

softmax

softmax

softmax

layers

192

192

192

192

192

batch_size

240

240

240

240

240

dropout_p_embed

0.5

0.5

N/A

N/A

0.5

dropout_p_hidden

0.05

0.05

N/A

N/A

0.05

learning_rate

0.085

0.085

0.085

0.085

0.085

momentum

0.3

0

N/A

N/A

N/A

n_sample

2048

0

N/A

N/A

N/A

sample_alpha

0.3

0

N/A

N/A

N/A

bpreg

0

0

N/A

N/A

N/A

logq

1

0

N/A

N/A

N/A

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

6.86

1019.34

80807.00

GRU4Rec Official

GRU4REC-pytorch params

5.22

0.76 x

1338.98

106326.00

GRU4REC-pytorch

OOB

20.53

2.99 x

3.93 x

337.68

27014.01

GRU4REC-pytorch

OOB Correct Eval

20.44

2.98 x

3.92 x

339.01

27120.93

GRU4REC-pytorch

Correct full

24.42

3.56 x

4.68 x

283.82

22705.56

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

2.77

880.71

199935.00

GRU4Rec Official

GRU4REC-pytorch params

1.89

0.68 x

1279.60

293600.00

GRU4REC-pytorch

OOB

10.10

3.65 x

5.34 x

228.56

54855.21

GRU4REC-pytorch

OOB Correct Eval

10.03

3.62 x

5.31 x

230.11

55225.62

GRU4REC-pytorch

Correct full

9.14

3.30 x

4.84 x

252.47

60592.49

Torch-GRU4Rec#

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1224

0.1224

0.3196

0.1928

0.4181

0.2060

0.5187

0.2131

GRU4Rec Official

Torch-GRU4Rec params

0.0979

0.0979

0.2672

0.1576

0.3631

0.1703

0.4639

0.1773

Torch-GRU4Rec

OOB

0.0926

0.0926

0.2413

0.1451

0.3336

0.1574

0.4201

0.1633

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1150

0.1150

0.3026

0.1814

0.4019

0.1947

0.4953

0.2012

GRU4Rec Official

Torch-GRU4Rec params

0.0907

0.0907

0.2462

0.1456

0.3331

0.1571

0.4249

0.1635

Torch-GRU4Rec

OOB

0.0806

0.0806

0.2206

0.1300

0.2994

0.1405

0.3834

0.1464

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

Torch-GRU4Rec params

-20.04%

-20.04%

-16.41%

-18.23%

-13.15%

-17.33%

-10.56%

-16.77%

Torch-GRU4Rec

OOB

-24.35%

-24.35%

-24.51%

-24.70%

-20.22%

-23.61%

-19.00%

-23.35%

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

Torch-GRU4Rec params

-21.12%

-21.12%

-18.63%

-19.73%

-17.11%

-19.29%

-14.20%

-18.73%

Torch-GRU4Rec

OOB

-29.89%

-29.89%

-27.10%

-28.36%

-25.50%

-27.83%

-22.60%

-27.27%

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

Torch-GRU4Rec

Variant

Best params

Torch-GRU4Rec params

OOB

loss

bpr-max

bpr-max

bpr-max

optim

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

embedding

0

224

224

final_act

elu-0.5

elu-0.5

elu-0.5

layers

224

224

224

batch_size

80

80

80

dropout_p_embed

0.5

0.5

0.5

dropout_p_hidden

0.05

0.05

0.05

learning_rate

0.05

0.05

0.05

momentum

0.4

0

N/A

n_sample

2048

2048

2048

sample_alpha

0.4

0.4

0.4

bpreg

1.95

1.95

1.95

logq

0

0

N/A

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

Torch-GRU4Rec

Variant

Best params

Torch-GRU4Rec params

OOB

loss

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

embedding

0

192

192

final_act

softmax

softmax

softmax

layers

192

192

192

batch_size

240

240

240

dropout_p_embed

0.5

0.5

0.5

dropout_p_hidden

0.05

0.05

0.05

learning_rate

0.085

0.085

0.085

momentum

0.3

0

N/A

n_sample

2048

2048

2048

sample_alpha

0.3

0.3

0.3

bpreg

0

0

0

logq

1

0

N/A

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

6.86

1019.34

80807.00

GRU4Rec Official

Torch-GRU4Rec params

6.53

0.95 x

1071.09

84909.00

Torch-GRU4Rec

OOB

26.39

3.85 x

4.04 x

265.19

21022.30

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

2.77

880.71

199935.00

GRU4Rec Official

Torch-GRU4Rec params

2.45

0.88 x

996.78

226283.00

Torch-GRU4Rec

OOB

10.67

3.85 x

4.36 x

229.70

52144.58

Recpack#

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1224

0.1224

0.3196

0.1928

0.4181

0.2060

0.5187

0.2131

GRU4Rec Official

Recpack params

0.0883

0.0883

0.2491

0.1449

0.3449

0.1577

0.4455

0.1647

Recpack

OOB

0.0618

0.0618

0.1757

0.1010

0.2461

0.1104

0.3226

0.1157

Recpack

Correct exp

0.0567

0.0567

0.1667

0.0954

0.2320

0.1041

0.3054

0.1092

Recpack

Correct full

0.0641

0.0641

0.1902

0.1082

0.2679

0.1185

0.3550

0.1245

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1150

0.1150

0.3026

0.1814

0.4019

0.1947

0.4953

0.2012

GRU4Rec Official

Recpack params

0.0914

0.0914

0.2458

0.1457

0.3356

0.1577

0.4235

0.1637

GRU4Rec Official

Recpack params

0.1040

0.1040

0.2670

0.1620

0.3508

0.1732

0.4322

0.1788

Recpack

OOB

0.0609

0.0609

0.1514

0.0935

0.1960

0.0995

0.2442

0.1029

Recpack

Correct exp

0.0545

0.0545

0.1390

0.0845

0.1780

0.0897

0.2210

0.0927

Recpack

Correct full

0.0650

0.0650

0.1755

0.1044

0.2323

0.1119

0.2866

0.1157

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

Recpack params

-27.88%

-27.88%

-22.07%

-24.82%

-17.51%

-23.47%

-14.11%

-22.71%

Recpack

OOB

-49.51%

-49.51%

-45.04%

-47.59%

-41.14%

-46.42%

-37.80%

-45.71%

Recpack

Correct exp

-53.65%

-53.65%

-47.84%

-50.53%

-44.51%

-49.50%

-41.12%

-48.76%

Recpack

Correct full

-47.60%

-47.60%

-40.50%

-43.85%

-35.92%

-42.49%

-31.56%

-41.58%

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

Recpack params

-20.58%

-20.58%

-18.79%

-19.70%

-16.48%

-19.03%

-14.48%

-18.64%

GRU4Rec Official

Recpack params

-9.63%

-9.63%

-11.77%

-10.72%

-12.71%

-11.05%

-12.74%

-11.14%

Recpack

OOB

-47.01%

-47.01%

-49.97%

-48.46%

-51.22%

-48.90%

-50.69%

-48.89%

Recpack

Correct exp

-52.61%

-52.61%

-54.07%

-53.44%

-55.70%

-53.94%

-55.38%

-53.95%

Recpack

Correct full

-43.53%

-43.53%

-41.99%

-42.48%

-42.20%

-42.51%

-42.14%

-42.51%

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

Recpack

Recpack

Recpack

Variant

Best params

Recpack params

OOB

Correct exp

Correct full

loss

bpr-max

bpr-max

bpr-max

bpr-max

bpr-max

optim

adagrad

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

False

embedding

0

224

224

224

224

final_act

elu-0.5

linear

N/A

N/A

N/A

layers

224

224

224

224

224

batch_size

80

80

80

80

80

dropout_p_embed

0.5

0.5

0.5

0.5

0.5

dropout_p_hidden

0.05

0.05

0.5

0.5

0.05

learning_rate

0.05

0.05

0.05

0.05

0.05

momentum

0.4

n_sample

2048

2048

2048

2048

2048

sample_alpha

0.4

0

N/A

N/A

N/A

bpreg

1.95

1.95

1

1.95

1.95

logq

0

0

N/A

N/A

N/A

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4Rec Official

Recpack

Recpack

Recpack

Variant

Best params

Recpack params

Recpack params

OOB

Correct exp

Correct full

loss

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

False

False

embedding

0

192

192

192

192

192

final_act

softmax

softmax

softmax

softmax

softmax

softmax

layers

192

192

192

192

192

192

batch_size

240

240

240

240

240

240

dropout_p_embed

0.5

0.5

0.5

0.5

0.5

0.5

dropout_p_hidden

0.05

0.05

0.05

0.5

0.5

0.05

learning_rate

0.085

0.085

0.085

0.085

0.085

0.085

momentum

0.3

0

0

N/A

N/A

N/A

n_sample

2048

2048

ALL

N/A

N/A

N/A

sample_alpha

0.3

0

N/A

N/A

N/A

N/A

bpreg

0

0

0

0

0

0

logq

1

0

N/A

N/A

N/A

N/A

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

6.86

1019.34

80807.00

GRU4Rec Official

Recpack params

6.43

0.94 x

1087.28

86193.00

Recpack

OOB

450.18

65.62 x

70.01 x

125.44

1232.31

Recpack

Correct exp

451.63

65.84 x

70.24 x

125.05

1228.42

Recpack

Correct full

461.24

67.24 x

71.73 x

122.40

1202.41

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

2.77

880.71

199935.00

GRU4Rec Official

Recpack params

2.45

0.88 x

997.22

226383.00

GRU4Rec Official

Recpack params

72.09

26.03 x

29.42 x

33.89

7693.00

Recpack

OOB

122.27

44.14 x

49.91 x

253.53

4535.76

Recpack

Correct exp

126.13

45.53 x

51.48 x

245.85

4398.31

Recpack

Correct full

121.39

43.82 x

49.55 x

255.38

4568.79

GRU4Rec_Tensorflow#

Note

BPR-Max is not supported by GRU4Rec_Tensorflow

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1150

0.1150

0.3026

0.1814

0.4019

0.1947

0.4953

0.2012

GRU4Rec Official

GRU4Rec_Tensorflow params

0.0541

0.0541

0.1662

0.0931

0.2425

0.1031

0.3309

0.1092

GRU4Rec_Tensorflow

OOB

0.0130

0.0130

0.0328

0.0201

0.0381

0.0208

0.0439

0.0212

GRU4Rec_Tensorflow

Correct Exp

0.0612

0.0612

0.1776

0.1019

0.2541

0.1120

0.3388

0.1179

Note

BPR-Max is not supported by GRU4Rec_Tensorflow

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

GRU4Rec_Tensorflow params

-52.99%

-52.99%

-45.08%

-48.71%

-39.67%

-47.05%

-33.19%

-45.73%

GRU4Rec_Tensorflow

OOB

-88.71%

-88.71%

-89.16%

-88.92%

-90.51%

-89.32%

-91.14%

-89.46%

GRU4Rec_Tensorflow

Correct Exp

-46.76%

-46.76%

-41.29%

-43.85%

-36.77%

-42.45%

-31.59%

-41.40%

Note

BPR-Max is not supported by GRU4Rec_Tensorflow

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4Rec_Tensorflow

GRU4Rec_Tensorflow

Variant

Best params

GRU4Rec_Tensorflow params

OOB

Correct Exp

loss

cross-entropy

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

embedding

0

192

192

192

final_act

softmax

softmax

softmax

softmax

layers

192

192

192

192

batch_size

240

240

50

240

dropout_p_embed

0.5

0

N/A

N/A

dropout_p_hidden

0.05

0.05

0.05

0.05

learning_rate

0.085

0.085

0.085

0.085

momentum

0.3

0

N/A

N/A

n_sample

2048

0

N/A

N/A

sample_alpha

0.3

0

N/A

N/A

bpreg

0

0

N/A

N/A

logq

1

0

N/A

N/A

Note

BPR-Max is not supported by GRU4Rec_Tensorflow

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

2.77

880.71

199935.00

GRU4Rec Official

GRU4Rec_Tensorflow params

1.86

0.67 x

1298.62

297964.00

GRU4Rec_Tensorflow

OOB

22.97

8.29 x

12.35 x

482.83

24141.37

GRU4Rec_Tensorflow

Correct Exp

5.09

1.84 x

2.74 x

454.82

109157.42

KerasGRU4Rec#

Note

BPR-Max is not supported by KerasGRU4Rec

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1150

0.1150

0.3026

0.1814

0.4019

0.1947

0.4953

0.2012

GRU4Rec Official

KerasGRU4Rec params

0.0981

0.0981

0.2531

0.1535

0.3338

0.1643

0.4239

0.1705

GRU4Rec Official

KerasGRU4Rec params

0.1057

0.1057

0.2601

0.1608

0.3405

0.1715

0.4200

0.1771

KerasGRU4Rec

OOB

0.0713

0.0713

0.1899

0.1124

0.2520

0.1207

0.3151

0.1250

KerasGRU4Rec

Correct exp

0.0962

0.0962

0.2440

0.1488

0.3209

0.1591

0.3938

0.1642

KerasGRU4Rec

Correct full

0.0962

0.0962

0.2463

0.1496

0.3206

0.1595

0.3957

0.1647

Note

BPR-Max is not supported by KerasGRU4Rec

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

KerasGRU4Rec params

-14.73%

-14.73%

-16.36%

-15.38%

-16.94%

-15.59%

-14.42%

-15.25%

GRU4Rec Official

KerasGRU4Rec params

-8.13%

-8.13%

-14.05%

-11.37%

-15.27%

-11.90%

-15.20%

-12.01%

KerasGRU4Rec

OOB

-37.98%

-37.98%

-37.26%

-38.05%

-37.30%

-38.03%

-36.38%

-37.88%

KerasGRU4Rec

Correct exp

-16.38%

-16.38%

-19.37%

-17.99%

-20.15%

-18.27%

-20.48%

-18.42%

KerasGRU4Rec

Correct full

-16.34%

-16.34%

-18.61%

-17.54%

-20.22%

-18.06%

-20.11%

-18.15%

Note

BPR-Max is not supported by KerasGRU4Rec

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4Rec Official

KerasGRU4Rec

KerasGRU4Rec

KerasGRU4Rec

Variant

Best params

KerasGRU4Rec params

KerasGRU4Rec params

OOB

Correct exp

Correct full

loss

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

adam

adagrad

adagrad

constrained_embedding

True

False

False

False

False

False

embedding

0

0

0

0

0

0

final_act

softmax

softmax

softmax

softmax

softmax

softmax

layers

192

192

192

100

192

192

batch_size

240

240

240

240

240

240

dropout_p_embed

0.5

0

0

N/A

N/A

N/A

dropout_p_hidden

0.05

0.05

0.05

0.25

0.05

0.05

learning_rate

0.085

0.085

0.085

0.001

0.085

0.085

momentum

0.3

0

0

N/A

N/A

N/A

n_sample

2048

2048

ALL

N/A

N/A

N/A

sample_alpha

0.3

0

N/A

N/A

N/A

N/A

bpreg

0

0

0

N/A

N/A

N/A

logq

1

0

N/A

N/A

N/A

N/A

Note

BPR-Max is not supported by KerasGRU4Rec

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

2.77

880.71

199935.00

GRU4Rec Official

KerasGRU4Rec params

2.20

0.79 x

1111.09

252235.00

GRU4Rec Official

KerasGRU4Rec params

71.93

25.97 x

32.70 x

33.96

7710.00

KerasGRU4Rec

OOB

276.29

99.74 x

125.59 x

8.35

2004.12

KerasGRU4Rec

Correct exp

282.69

102.05 x

128.50 x

8.16

1958.63

KerasGRU4Rec

Correct full

281.92

101.78 x

128.15 x

8.18

1964.05