Yoochoose#

This dataset contains user sessions from an unnamed e-commerce site. The data is already split into proper sessions and each session consists of one or more click events and might have purchase event(s) associated with it. As we are focusing on the next item prediction task within sessions, we only use the click events. The dataset was originally released for RecSys Challenge 2015 and has been used for evaluating sessionbased recommenders since then.

GRU4REC-pytorch#

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1745

0.1745

0.4346

0.2675

0.5664

0.2851

0.6799

0.2931

GRU4Rec Official

GRU4REC-pytorch params

0.0988

0.0988

0.2613

0.1554

0.3620

0.1688

0.4655

0.1760

GRU4REC-pytorch

OOB

0.0002

0.0002

0.0012

0.0005

0.0031

0.0007

0.0087

0.0011

GRU4REC-pytorch

OOB Correct Eval

0.0009

0.0009

0.0104

0.0036

0.0409

0.0074

0.1066

0.0118

GRU4REC-pytorch

Correct full

0.0108

0.0108

0.0603

0.0269

0.1112

0.0335

0.1923

0.0391

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1797

0.1797

0.4457

0.2757

0.5698

0.2924

0.6804

0.3002

GRU4Rec Official

GRU4REC-pytorch params

0.0717

0.0717

0.2386

0.1301

0.3478

0.1446

0.4583

0.1523

GRU4REC-pytorch

OOB

0.0933

0.0933

0.1090

0.0998

0.1129

0.1003

0.1169

0.1006

GRU4REC-pytorch

OOB Correct Eval

0.0951

0.0951

0.1134

0.1029

0.1173

0.1034

0.1212

0.1037

GRU4REC-pytorch

Correct full

0.0493

0.0493

0.1997

0.1001

0.3052

0.1141

0.4271

0.1227

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

GRU4REC-pytorch params

-43.42%

-43.42%

-39.88%

-41.92%

-36.09%

-40.80%

-31.53%

-39.96%

GRU4REC-pytorch

OOB

-99.91%

-99.91%

-99.72%

-99.83%

-99.46%

-99.76%

-98.72%

-99.63%

GRU4REC-pytorch

OOB Correct Eval

-99.48%

-99.48%

-97.62%

-98.66%

-92.78%

-97.40%

-84.32%

-95.98%

GRU4REC-pytorch

Correct full

-93.80%

-93.80%

-86.13%

-89.95%

-80.36%

-88.25%

-71.72%

-86.67%

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

GRU4REC-pytorch params

-60.10%

-60.10%

-46.48%

-52.83%

-38.96%

-50.54%

-32.64%

-49.27%

GRU4REC-pytorch

OOB

-48.10%

-48.10%

-75.54%

-63.82%

-80.19%

-65.70%

-82.82%

-66.50%

GRU4REC-pytorch

OOB Correct Eval

-47.07%

-47.07%

-74.56%

-62.69%

-79.42%

-64.64%

-82.19%

-65.46%

GRU4REC-pytorch

Correct full

-72.58%

-72.58%

-55.19%

-63.68%

-46.44%

-60.98%

-37.22%

-59.14%

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4REC-pytorch

GRU4REC-pytorch

GRU4REC-pytorch

Variant

Best params

GRU4REC-pytorch params

OOB

OOB Correct Eval

Correct full

loss

bpr-max

bpr-max

bpr-max

bpr-max

bpr-max

optim

adagrad

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

False

embedding

0

448

448

448

448

final_act

linear

linear

linear

linear

linear

layers

448

448

448

448

448

batch_size

48

48

48

48

48

dropout_p_embed

0.25

0.25

N/A

N/A

0.25

dropout_p_hidden

0

0

N/A

N/A

0

learning_rate

0.075

0.075

0.075

0.075

0.075

momentum

0.1

0

N/A

N/A

N/A

n_sample

2048

0

N/A

N/A

N/A

sample_alpha

0.2

0

N/A

N/A

N/A

bpreg

0.5

0

N/A

N/A

N/A

logq

0

0

N/A

N/A

N/A

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4REC-pytorch

GRU4REC-pytorch

GRU4REC-pytorch

Variant

Best params

GRU4REC-pytorch params

OOB

OOB Correct Eval

Correct full

loss

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

False

embedding

0

480

480

480

480

final_act

softmax

softmax

softmax

softmax

softmax

layers

480

480

480

480

480

batch_size

48

48

48

48

48

dropout_p_embed

0

0

N/A

N/A

0

dropout_p_hidden

0.2

0.2

N/A

N/A

0.2

learning_rate

0.07

0.07

0.07

0.07

0.07

momentum

0

0

N/A

N/A

N/A

n_sample

2048

0

N/A

N/A

N/A

sample_alpha

0.2

0

N/A

N/A

N/A

bpreg

0

0

N/A

N/A

N/A

logq

1

0

N/A

N/A

N/A

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

487.51

919.23

44121.00

GRU4Rec Official

GRU4REC-pytorch params

362.75

0.74 x

1235.40

59297.00

GRU4REC-pytorch

OOB

1854.78

3.80 x

5.11 x

241.61

11597.27

GRU4REC-pytorch

OOB Correct Eval

1857.10

3.81 x

5.12 x

241.30

11582.50

GRU4REC-pytorch

Correct full

2123.40

4.36 x

5.85 x

211.06

10130.73

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

451.75

991.99

47613.00

GRU4Rec Official

GRU4REC-pytorch params

350.38

0.78 x

1279.01

61390.00

GRU4REC-pytorch

OOB

1948.18

4.31 x

5.56 x

230.02

11040.99

GRU4REC-pytorch

OOB Correct Eval

1944.45

4.30 x

5.55 x

230.46

11062.17

GRU4REC-pytorch

Correct full

1933.25

4.28 x

5.52 x

231.80

11126.37

Torch-GRU4Rec#

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1745

0.1745

0.4346

0.2675

0.5664

0.2851

0.6799

0.2931

GRU4Rec Official

Torch-GRU4Rec params

0.1748

0.1748

0.4298

0.2662

0.5603

0.2837

0.6769

0.2919

Torch-GRU4Rec

OOB

0.1755

0.1755

0.4271

0.2654

0.5560

0.2826

0.6711

0.2907

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1797

0.1797

0.4457

0.2757

0.5698

0.2924

0.6804

0.3002

GRU4Rec Official

Torch-GRU4Rec params

0.1710

0.1710

0.4301

0.2633

0.5571

0.2803

0.6690

0.2882

Torch-GRU4Rec

OOB

0.1686

0.1686

0.4268

0.2598

0.5528

0.2768

0.6671

0.2847

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

Torch-GRU4Rec params

0.14%

0.14%

-1.09%

-0.49%

-1.07%

-0.48%

-0.45%

-0.39%

Torch-GRU4Rec

OOB

0.53%

0.53%

-1.72%

-0.77%

-1.84%

-0.89%

-1.30%

-0.82%

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

Torch-GRU4Rec params

-4.81%

-4.81%

-3.50%

-4.52%

-2.23%

-4.14%

-1.67%

-4.00%

Torch-GRU4Rec

OOB

-6.14%

-6.14%

-4.25%

-5.77%

-2.99%

-5.35%

-1.95%

-5.14%

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

Torch-GRU4Rec

Variant

Best params

Torch-GRU4Rec params

OOB

loss

bpr-max

bpr-max

bpr-max

optim

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

embedding

0

448

448

final_act

linear

linear

linear

layers

448

448

448

batch_size

48

48

48

dropout_p_embed

0.25

0.25

0.25

dropout_p_hidden

0

0

0

learning_rate

0.075

0.075

0.075

momentum

0.1

0

N/A

n_sample

2048

2048

2048

sample_alpha

0.2

0.2

0.2

bpreg

0.5

0.5

0.5

logq

0

0

N/A

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

Torch-GRU4Rec

Variant

Best params

Torch-GRU4Rec params

OOB

loss

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

embedding

0

480

480

final_act

softmax

softmax

softmax

layers

480

480

480

batch_size

48

48

48

dropout_p_embed

0

0

0

dropout_p_hidden

0.2

0.2

0.2

learning_rate

0.07

0.07

0.07

momentum

0

0

N/A

n_sample

2048

2048

2048

sample_alpha

0.2

0.2

0.2

bpreg

0

0

0

logq

1

0

N/A

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

487.51

919.23

44121.00

GRU4Rec Official

Torch-GRU4Rec params

461.22

0.95 x

971.64

46636.00

Torch-GRU4Rec

OOB

2164.21

4.44 x

4.69 x

207.09

9939.82

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

451.75

991.99

47613.00

GRU4Rec Official

Torch-GRU4Rec params

439.19

0.97 x

1020.37

48975.00

Torch-GRU4Rec

OOB

2082.11

4.61 x

4.74 x

215.24

10330.85

Recpack#

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1745

0.1745

0.4346

0.2675

0.5664

0.2851

0.6799

0.2931

GRU4Rec Official

Recpack params

0.1753

0.1753

0.4304

0.2666

0.5578

0.2837

0.6749

0.2919

Recpack

OOB

0.1500

0.1500

0.3878

0.2358

0.5182

0.2532

0.6430

0.2619

Recpack

Correct exp

0.1571

0.1571

0.3984

0.2443

0.5260

0.2613

0.6464

0.2697

Recpack

Correct full

0.1581

0.1581

0.3967

0.2437

0.5239

0.2607

0.6433

0.2691

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1797

0.1797

0.4457

0.2757

0.5698

0.2924

0.6804

0.3002

GRU4Rec Official

Recpack params

0.1709

0.1709

0.4301

0.2625

0.5603

0.2800

0.6713

0.2877

GRU4Rec Official

Recpack params

0.1825

0.1825

0.4447

0.2770

0.5698

0.2938

0.6802

0.3016

Recpack

OOB

0.1533

0.1533

0.3941

0.2393

0.5108

0.2549

0.6214

0.2627

Recpack

Correct exp

0.1548

0.1548

0.3970

0.2417

0.5157

0.2576

0.6256

0.2653

Recpack

Correct full

0.1647

0.1647

0.4074

0.2516

0.5283

0.2678

0.6382

0.2755

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

Recpack params

0.43%

0.43%

-0.96%

-0.32%

-1.51%

-0.50%

-0.74%

-0.41%

Recpack

OOB

-14.04%

-14.04%

-10.77%

-11.85%

-8.51%

-11.20%

-5.44%

-10.63%

Recpack

Correct exp

-9.98%

-9.98%

-8.32%

-8.68%

-7.13%

-8.35%

-4.93%

-7.97%

Recpack

Correct full

-9.43%

-9.43%

-8.71%

-8.88%

-7.50%

-8.56%

-5.39%

-8.19%

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

Recpack params

-4.89%

-4.89%

-3.52%

-4.81%

-1.67%

-4.25%

-1.33%

-4.14%

GRU4Rec Official

Recpack params

1.56%

1.56%

-0.23%

0.46%

0.00%

0.50%

-0.02%

0.46%

Recpack

OOB

-14.70%

-14.70%

-11.57%

-13.20%

-10.35%

-12.81%

-8.67%

-12.50%

Recpack

Correct exp

-13.87%

-13.87%

-10.94%

-12.35%

-9.50%

-11.89%

-8.05%

-11.62%

Recpack

Correct full

-8.33%

-8.33%

-8.59%

-8.77%

-7.29%

-8.41%

-6.19%

-8.23%

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

Recpack

Recpack

Recpack

Variant

Best params

Recpack params

OOB

Correct exp

Correct full

loss

bpr-max

bpr-max

bpr-max

bpr-max

bpr-max

optim

adagrad

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

False

embedding

0

448

448

448

448

final_act

linear

linear

N/A

N/A

N/A

layers

448

448

448

448

448

batch_size

48

48

48

48

48

dropout_p_embed

0.25

0.25

0.25

0.25

0.25

dropout_p_hidden

0

0

0.25

0.25

0

learning_rate

0.075

0.075

0.075

0.075

0.075

momentum

0.1

0

N/A

N/A

N/A

n_sample

2048

2048

2048

2048

2048

sample_alpha

0.2

0

N/A

N/A

N/A

bpreg

0.5

0.5

0.5

0.5

0.5

logq

0

0

N/A

N/A

N/A

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4Rec Official

Recpack

Recpack

Recpack

Variant

Best params

Recpack params

Recpack params

OOB

Correct exp

Correct full

loss

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

False

False

embedding

0

480

480

480

480

480

final_act

softmax

softmax

softmax

softmax

softmax

softmax

layers

480

480

480

480

480

480

batch_size

48

48

48

48

48

48

dropout_p_embed

0

0

0

0

0

0

dropout_p_hidden

0.2

0.2

0.2

0

0

0.2

learning_rate

0.07

0.07

0.07

0.07

0.07

0.07

momentum

0

0

0

N/A

N/A

N/A

n_sample

2048

2048

ALL

N/A

N/A

N/A

sample_alpha

0.2

0

N/A

N/A

N/A

N/A

bpreg

0

0

0

0

0

0

logq

1

0

N/A

N/A

N/A

N/A

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

487.51

919.23

44121.00

GRU4Rec Official

Recpack params

460.73

0.95 x

972.67

46686.00

Recpack

OOB

21269.54

43.63 x

46.16 x

131.16

1011.29

Recpack

Correct exp

21382.12

43.86 x

46.41 x

130.47

1005.96

Recpack

Correct full

21137.61

43.36 x

45.88 x

131.98

1017.60

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

451.75

991.99

47613.00

GRU4Rec Official

Recpack params

442.76

0.98 x

1012.15

48581.00

GRU4Rec Official

Recpack params

2859.14

6.33 x

6.46 x

156.74

7523.00

Recpack

OOB

13458.18

29.79 x

30.40 x

207.29

1598.25

Recpack

Correct exp

13462.56

29.80 x

30.41 x

207.22

1597.74

Recpack

Correct full

13693.73

30.31 x

30.93 x

203.72

1570.76

GRU4Rec_Tensorflow#

Note

BPR-Max is not supported by GRU4Rec_Tensorflow

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1797

0.1797

0.4457

0.2757

0.5698

0.2924

0.6804

0.3002

GRU4Rec Official

GRU4Rec_Tensorflow params

0.0715

0.0715

0.2325

0.1269

0.3431

0.1416

0.4555

0.1495

GRU4Rec_Tensorflow

OOB

0.0727

0.0727

0.2051

0.1178

0.2946

0.1296

0.3857

0.1359

GRU4Rec_Tensorflow

Correct Exp

0.0691

0.0691

0.2301

0.1252

0.3409

0.1399

0.4606

0.1482

Note

BPR-Max is not supported by GRU4Rec_Tensorflow

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

GRU4Rec_Tensorflow params

-60.19%

-60.19%

-47.85%

-53.96%

-39.79%

-51.56%

-33.05%

-50.21%

GRU4Rec_Tensorflow

OOB

-59.52%

-59.52%

-54.00%

-57.27%

-48.30%

-55.68%

-43.31%

-54.73%

GRU4Rec_Tensorflow

Correct Exp

-61.54%

-61.54%

-48.37%

-54.61%

-40.17%

-52.16%

-32.29%

-50.63%

Note

BPR-Max is not supported by GRU4Rec_Tensorflow

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4Rec_Tensorflow

GRU4Rec_Tensorflow

Variant

Best params

GRU4Rec_Tensorflow params

OOB

Correct Exp

loss

cross-entropy

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

embedding

0

480

480

480

final_act

softmax

softmax

softmax

softmax

layers

480

480

480

480

batch_size

48

48

50

48

dropout_p_embed

0

0

N/A

N/A

dropout_p_hidden

0.2

0.2

0.2

0.2

learning_rate

0.07

0.07

0.07

0.07

momentum

0

0

N/A

N/A

n_sample

2048

0

N/A

N/A

sample_alpha

0.2

0

N/A

N/A

bpreg

0

0

N/A

N/A

logq

1

0

N/A

N/A

Note

BPR-Max is not supported by GRU4Rec_Tensorflow

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

451.75

991.99

47613.00

GRU4Rec Official

GRU4Rec_Tensorflow params

352.48

0.78 x

1271.36

61023.00

GRU4Rec_Tensorflow

OOB

981.87

2.17 x

2.79 x

440.53

22026.42

GRU4Rec_Tensorflow

Correct Exp

965.98

2.14 x

2.74 x

463.92

22268.35

KerasGRU4Rec#

Note

BPR-Max is not supported by KerasGRU4Rec

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.1797

0.1797

0.4457

0.2757

0.5698

0.2924

0.6804

0.3002

GRU4Rec Official

KerasGRU4Rec params

0.1734

0.1734

0.4351

0.2671

0.5612

0.2841

0.6722

0.2919

GRU4Rec Official

KerasGRU4Rec params

0.1851

0.1851

0.4490

0.2802

0.5724

0.2968

0.6809

0.3044

KerasGRU4Rec

OOB

0.1576

0.1576

0.3915

0.2410

0.5195

0.2581

0.6392

0.2666

KerasGRU4Rec

Correct exp

0.1815

0.1815

0.4444

0.2766

0.5694

0.2934

0.6784

0.3010

KerasGRU4Rec

Correct full

0.1824

0.1824

0.4446

0.2771

0.5678

0.2936

0.6768

0.3013

Note

BPR-Max is not supported by KerasGRU4Rec

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

KerasGRU4Rec params

-3.47%

-3.47%

-2.40%

-3.12%

-1.50%

-2.84%

-1.21%

-2.76%

GRU4Rec Official

KerasGRU4Rec params

3.00%

3.00%

0.72%

1.61%

0.45%

1.49%

0.08%

1.39%

KerasGRU4Rec

OOB

-12.28%

-12.28%

-12.17%

-12.58%

-8.84%

-11.73%

-6.04%

-11.20%

KerasGRU4Rec

Correct exp

1.03%

1.03%

-0.29%

0.32%

-0.07%

0.35%

-0.28%

0.29%

KerasGRU4Rec

Correct full

1.52%

1.52%

-0.27%

0.48%

-0.35%

0.42%

-0.52%

0.37%

Note

BPR-Max is not supported by KerasGRU4Rec

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4Rec Official

KerasGRU4Rec

KerasGRU4Rec

KerasGRU4Rec

Variant

Best params

KerasGRU4Rec params

KerasGRU4Rec params

OOB

Correct exp

Correct full

loss

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

adam

adagrad

adagrad

constrained_embedding

True

False

False

False

False

False

embedding

0

0

0

0

0

0

final_act

softmax

softmax

softmax

softmax

softmax

softmax

layers

480

480

480

100

480

480

batch_size

48

48

48

48

48

48

dropout_p_embed

0

0

0

N/A

N/A

N/A

dropout_p_hidden

0.2

0.2

0.2

0.25

0.2

0.2

learning_rate

0.07

0.07

0.07

0.001

0.07

0.07

momentum

0

0

0

N/A

N/A

N/A

n_sample

2048

2048

ALL

N/A

N/A

N/A

sample_alpha

0.2

0

N/A

N/A

N/A

N/A

bpreg

0

0

0

N/A

N/A

N/A

logq

1

0

N/A

N/A

N/A

N/A

Note

BPR-Max is not supported by KerasGRU4Rec

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

451.75

991.99

47613.00

GRU4Rec Official

KerasGRU4Rec params

390.87

0.87 x

1146.51

55030.00

GRU4Rec Official

KerasGRU4Rec params

2800.25

6.20 x

7.16 x

160.03

7681.00

KerasGRU4Rec

OOB

13740.04

30.42 x

35.15 x

32.61

1565.46

KerasGRU4Rec

Correct exp

16610.50

36.77 x

42.50 x

26.98

1294.93

KerasGRU4Rec

Correct full

16666.31

36.89 x

42.64 x

26.89

1290.60