Diginetica#

The dataset consists of user sessions collected over six months. The sessions were extracted from the search engine logs of an e-commerce site, and contain item page views that were preceded by search queries. The dataset doesn’t have exact timestamps, but each event has a property denoting the elapsed time since its session’s first query. The day of the first queries is also known. The dataset was released for the CIKM Cup 2016 Track 2: Personalized E-Commerce Search Challenge.

GRU4REC-pytorch#

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.0688

0.0688

0.2304

0.1237

0.3533

0.1399

0.4995

0.1500

GRU4Rec Official

GRU4REC-pytorch params

0.0365

0.0365

0.1283

0.0675

0.2066

0.0778

0.3141

0.0851

GRU4REC-pytorch

OOB

0.0006

0.0006

0.0020

0.0011

0.0039

0.0013

0.0070

0.0015

GRU4REC-pytorch

OOB Correct Eval

0.0239

0.0239

0.0937

0.0472

0.1537

0.0551

0.2367

0.0608

GRU4REC-pytorch

Correct full

0.0277

0.0277

0.1070

0.0543

0.1747

0.0632

0.2616

0.0692

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.0647

0.0647

0.2220

0.1181

0.3414

0.1339

0.4874

0.1440

GRU4Rec Official

GRU4REC-pytorch params

0.0296

0.0296

0.1133

0.0576

0.1888

0.0675

0.2973

0.0749

GRU4REC-pytorch

OOB

0.0287

0.0287

0.0376

0.0321

0.0415

0.0327

0.0457

0.0329

GRU4REC-pytorch

OOB Correct Eval

0.0321

0.0321

0.0415

0.0357

0.0457

0.0363

0.0503

0.0366

GRU4REC-pytorch

Correct full

0.0288

0.0288

0.1135

0.0572

0.1860

0.0667

0.2862

0.0736

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

GRU4REC-pytorch params

-47.02%

-47.02%

-44.31%

-45.41%

-41.53%

-44.39%

-37.13%

-43.22%

GRU4REC-pytorch

OOB

-99.15%

-99.15%

-99.11%

-99.14%

-98.90%

-99.07%

-98.60%

-98.99%

GRU4REC-pytorch

OOB Correct Eval

-65.34%

-65.34%

-59.33%

-61.86%

-56.49%

-60.61%

-52.62%

-59.47%

GRU4REC-pytorch

Correct full

-59.74%

-59.74%

-53.55%

-56.08%

-50.55%

-54.81%

-47.62%

-53.87%

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

GRU4REC-pytorch params

-54.28%

-54.28%

-48.96%

-51.20%

-44.68%

-49.54%

-39.00%

-47.98%

GRU4REC-pytorch

OOB

-55.59%

-55.59%

-83.08%

-72.79%

-87.86%

-75.61%

-90.62%

-77.13%

GRU4REC-pytorch

OOB Correct Eval

-50.44%

-50.44%

-81.29%

-69.74%

-86.62%

-72.89%

-89.68%

-74.58%

GRU4REC-pytorch

Correct full

-55.50%

-55.50%

-48.88%

-51.59%

-45.51%

-50.15%

-41.28%

-48.90%

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4REC-pytorch

GRU4REC-pytorch

GRU4REC-pytorch

Variant

Best params

GRU4REC-pytorch params

OOB

OOB Correct Eval

Correct full

loss

bpr-max

bpr-max

bpr-max

bpr-max

bpr-max

optim

adagrad

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

False

embedding

0

512

512

512

512

final_act

elu-1

elu-1

elu-1

elu-1

elu-1

layers

512

512

512

512

512

batch_size

128

128

128

128

128

dropout_p_embed

0.5

0.5

N/A

N/A

0.5

dropout_p_hidden

0.3

0.3

N/A

N/A

0.3

learning_rate

0.05

0.05

0.05

0.05

0.05

momentum

0.15

0

N/A

N/A

N/A

n_sample

2048

0

N/A

N/A

N/A

sample_alpha

0.3

0

N/A

N/A

N/A

bpreg

0.9

0

N/A

N/A

N/A

logq

0

0

N/A

N/A

N/A

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4REC-pytorch

GRU4REC-pytorch

GRU4REC-pytorch

Variant

Best params

GRU4REC-pytorch params

OOB

OOB Correct Eval

Correct full

loss

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

False

embedding

0

192

192

192

192

final_act

softmax

softmax

softmax

softmax

softmax

layers

192

192

192

192

192

batch_size

128

128

128

128

128

dropout_p_embed

0.45

0.45

N/A

N/A

0.45

dropout_p_hidden

0.15

0.15

N/A

N/A

0.15

learning_rate

0.1

0.1

0.1

0.1

0.1

momentum

0

0

N/A

N/A

N/A

n_sample

2048

0

N/A

N/A

N/A

sample_alpha

0

0

N/A

N/A

N/A

bpreg

0

0

N/A

N/A

N/A

logq

1

0

N/A

N/A

N/A

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

8.02

639.87

81757.00

GRU4Rec Official

GRU4REC-pytorch params

5.29

0.66 x

969.27

123869.00

GRU4REC-pytorch

OOB

32.24

4.02 x

6.09 x

158.86

20333.91

GRU4REC-pytorch

OOB Correct Eval

32.18

4.01 x

6.08 x

159.20

20378.12

GRU4REC-pytorch

Correct full

36.76

4.58 x

6.95 x

139.36

17838.75

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

4.52

1134.52

144959.00

GRU4Rec Official

GRU4REC-pytorch params

3.67

0.81 x

1398.76

178755.00

GRU4REC-pytorch

OOB

17.65

3.90 x

4.81 x

290.27

37154.98

GRU4REC-pytorch

OOB Correct Eval

17.67

3.91 x

4.81 x

289.91

37108.16

GRU4REC-pytorch

Correct full

16.97

3.75 x

4.62 x

301.78

38627.84

Torch-GRU4Rec#

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.0688

0.0688

0.2304

0.1237

0.3533

0.1399

0.4995

0.1500

GRU4Rec Official

Torch-GRU4Rec params

0.0643

0.0643

0.2113

0.1143

0.3204

0.1287

0.4597

0.1383

Torch-GRU4Rec

OOB

0.0636

0.0636

0.2110

0.1137

0.3185

0.1278

0.4550

0.1372

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.0647

0.0647

0.2220

0.1181

0.3414

0.1339

0.4874

0.1440

GRU4Rec Official

Torch-GRU4Rec params

0.0552

0.0552

0.1927

0.1020

0.2967

0.1157

0.4255

0.1246

Torch-GRU4Rec

OOB

0.0541

0.0541

0.1894

0.1002

0.2921

0.1137

0.4245

0.1229

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

Torch-GRU4Rec params

-6.58%

-6.58%

-8.30%

-7.53%

-9.32%

-7.97%

-7.97%

-7.76%

Torch-GRU4Rec

OOB

-7.64%

-7.64%

-8.42%

-8.08%

-9.85%

-8.63%

-8.92%

-8.54%

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

Torch-GRU4Rec params

-14.78%

-14.78%

-13.17%

-13.69%

-13.08%

-13.55%

-12.70%

-13.47%

Torch-GRU4Rec

OOB

-16.45%

-16.45%

-14.67%

-15.19%

-14.44%

-15.04%

-12.90%

-14.71%

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

Torch-GRU4Rec

Variant

Best params

Torch-GRU4Rec params

OOB

loss

bpr-max

bpr-max

bpr-max

optim

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

embedding

0

512

512

final_act

elu-1

elu-1

elu-1

layers

512

512

512

batch_size

128

128

128

dropout_p_embed

0.5

0.5

0.5

dropout_p_hidden

0.3

0.3

0.3

learning_rate

0.05

0.05

0.05

momentum

0.15

0

N/A

n_sample

2048

2048

2048

sample_alpha

0.3

0.3

0.3

bpreg

0.9

0.9

0.9

logq

0

0

N/A

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

Torch-GRU4Rec

Variant

Best params

Torch-GRU4Rec params

OOB

loss

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

embedding

0

192

192

final_act

softmax

softmax

softmax

layers

192

192

192

batch_size

128

128

128

dropout_p_embed

0.45

0.45

0.45

dropout_p_hidden

0.15

0.15

0.15

learning_rate

0.1

0.1

0.1

momentum

0

0

N/A

n_sample

2048

2048

2048

sample_alpha

0

0

0

bpreg

0

0

0

logq

1

0

N/A

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

8.02

639.87

81757.00

GRU4Rec Official

Torch-GRU4Rec params

7.71

0.96 x

665.42

85021.00

Torch-GRU4Rec

OOB

36.89

4.60 x

4.78 x

139.19

17783.97

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

4.52

1134.52

144959.00

GRU4Rec Official

Torch-GRU4Rec params

4.48

0.99 x

1146.91

146542.00

Torch-GRU4Rec

OOB

17.74

3.92 x

3.96 x

289.38

36974.80

Recpack#

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.0688

0.0688

0.2304

0.1237

0.3533

0.1399

0.4995

0.1500

GRU4Rec Official

Recpack params

0.0635

0.0635

0.2101

0.1138

0.3203

0.1283

0.4586

0.1379

Recpack

OOB

0.0409

0.0409

0.1412

0.0752

0.2162

0.0851

0.3066

0.0913

Recpack

Correct exp

0.0449

0.0449

0.1609

0.0839

0.2558

0.0964

0.3744

0.1046

Recpack

Correct full

0.0430

0.0430

0.1643

0.0836

0.2580

0.0959

0.3756

0.1040

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.0647

0.0647

0.2220

0.1181

0.3414

0.1339

0.4874

0.1440

GRU4Rec Official

Recpack params

0.0562

0.0562

0.1902

0.1019

0.2939

0.1157

0.4263

0.1248

GRU4Rec Official

Recpack params

0.0603

0.0603

0.2001

0.1083

0.3058

0.1223

0.4341

0.1312

Recpack

OOB

0.0411

0.0411

0.1442

0.0760

0.2238

0.0865

0.3279

0.0937

Recpack

Correct exp

0.0411

0.0411

0.1433

0.0757

0.2193

0.0857

0.3219

0.0927

Recpack

Correct full

0.0408

0.0408

0.1463

0.0766

0.2274

0.0873

0.3296

0.0944

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

Recpack params

-7.71%

-7.71%

-8.82%

-7.99%

-9.35%

-8.24%

-8.19%

-8.05%

Recpack

OOB

-40.57%

-40.57%

-38.70%

-39.21%

-38.82%

-39.16%

-38.63%

-39.10%

Recpack

Correct exp

-34.84%

-34.84%

-30.16%

-32.13%

-27.59%

-31.06%

-25.05%

-30.27%

Recpack

Correct full

-37.51%

-37.51%

-28.70%

-32.38%

-26.96%

-31.41%

-24.81%

-30.62%

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

Recpack params

-13.23%

-13.23%

-14.32%

-13.69%

-13.90%

-13.59%

-12.52%

-13.34%

GRU4Rec Official

Recpack params

-6.88%

-6.88%

-9.87%

-8.32%

-10.41%

-8.62%

-10.92%

-8.93%

Recpack

OOB

-36.53%

-36.53%

-35.05%

-35.64%

-34.45%

-35.37%

-32.72%

-34.94%

Recpack

Correct exp

-36.50%

-36.50%

-35.44%

-35.94%

-35.75%

-36.00%

-33.96%

-35.62%

Recpack

Correct full

-37.00%

-37.00%

-34.07%

-35.11%

-33.38%

-34.75%

-32.37%

-34.46%

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

Recpack

Recpack

Recpack

Variant

Best params

Recpack params

OOB

Correct exp

Correct full

loss

bpr-max

bpr-max

bpr-max

bpr-max

bpr-max

optim

adagrad

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

False

embedding

0

512

512

512

512

final_act

elu-1

linear

N/A

N/A

N/A

layers

512

512

512

512

512

batch_size

128

128

128

128

128

dropout_p_embed

0.5

0.5

0.5

0.5

0.5

dropout_p_hidden

0.3

0.3

0.5

0.5

0.3

learning_rate

0.05

0.05

0.05

0.05

0.05

momentum

0.15

0

N/A

N/A

N/A

n_sample

2048

2048

2048

2048

2048

sample_alpha

0.3

0

N/A

N/A

N/A

bpreg

0.9

0.9

1

0.9

0.9

logq

0

0

N/A

N/A

N/A

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4Rec Official

Recpack

Recpack

Recpack

Variant

Best params

Recpack params

Recpack params

OOB

Correct exp

Correct full

loss

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

False

False

embedding

0

192

192

192

192

192

final_act

softmax

softmax

softmax

softmax

softmax

softmax

layers

192

192

192

192

192

192

batch_size

128

128

128

128

128

128

dropout_p_embed

0.45

0.45

0.45

0.45

0.45

0.45

dropout_p_hidden

0.15

0.15

0.15

0.45

0.45

0.15

learning_rate

0.1

0.1

0.1

0.1

0.1

0.1

momentum

0

0

0

N/A

N/A

N/A

n_sample

2048

2048

ALL

N/A

N/A

N/A

sample_alpha

0

0

N/A

N/A

N/A

N/A

bpreg

0

0

0

0

0

0

logq

1

0

N/A

N/A

N/A

N/A

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

8.02

639.87

81757.00

GRU4Rec Official

Recpack params

7.73

0.96 x

663.79

84812.00

Recpack

OOB

352.17

43.91 x

45.56 x

79.68

1862.33

Recpack

Correct exp

346.70

43.23 x

44.85 x

80.94

1891.72

Recpack

Correct full

342.34

42.69 x

44.29 x

81.97

1915.79

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

4.52

1134.52

144959.00

GRU4Rec Official

Recpack params

4.45

0.98 x

1154.05

147454.00

GRU4Rec Official

Recpack params

76.19

16.86 x

17.12 x

67.37

8608.00

Recpack

OOB

115.21

25.49 x

25.89 x

243.62

5693.79

Recpack

Correct exp

115.44

25.54 x

25.94 x

243.09

5681.55

Recpack

Correct full

115.35

25.52 x

25.92 x

243.27

5685.80

GRU4Rec_Tensorflow#

Note

BPR-Max is not supported by GRU4Rec_Tensorflow

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.0647

0.0647

0.2220

0.1181

0.3414

0.1339

0.4874

0.1440

GRU4Rec Official

GRU4Rec_Tensorflow params

0.0313

0.0313

0.1136

0.0588

0.1893

0.0687

0.2976

0.0761

GRU4Rec_Tensorflow

OOB

0.0043

0.0043

0.0129

0.0073

0.0202

0.0082

0.0284

0.0088

GRU4Rec_Tensorflow

Correct Exp

0.0335

0.0335

0.1224

0.0635

0.1978

0.0734

0.3014

0.0805

Note

BPR-Max is not supported by GRU4Rec_Tensorflow

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

GRU4Rec_Tensorflow params

-51.59%

-51.59%

-48.83%

-50.26%

-44.54%

-48.70%

-38.94%

-47.19%

GRU4Rec_Tensorflow

OOB

-93.40%

-93.40%

-94.19%

-93.83%

-94.08%

-93.85%

-94.17%

-93.89%

GRU4Rec_Tensorflow

Correct Exp

-48.27%

-48.27%

-44.85%

-46.24%

-42.07%

-45.18%

-38.16%

-44.14%

Note

BPR-Max is not supported by GRU4Rec_Tensorflow

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4Rec_Tensorflow

GRU4Rec_Tensorflow

Variant

Best params

GRU4Rec_Tensorflow params

OOB

Correct Exp

loss

cross-entropy

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

adagrad

constrained_embedding

True

False

False

False

embedding

0

192

192

192

final_act

softmax

softmax

softmax

softmax

layers

192

192

192

192

batch_size

128

128

50

128

dropout_p_embed

0.45

0

N/A

N/A

dropout_p_hidden

0.15

0.15

0.15

0.15

learning_rate

0.1

0.1

0.1

0.1

momentum

0

0

N/A

N/A

n_sample

2048

0

N/A

N/A

sample_alpha

0

0

N/A

N/A

bpreg

0

0

N/A

N/A

logq

1

0

N/A

N/A

Note

BPR-Max is not supported by GRU4Rec_Tensorflow

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

4.52

1134.52

144959.00

GRU4Rec Official

GRU4Rec_Tensorflow params

3.62

0.80 x

1417.96

181209.00

GRU4Rec_Tensorflow

OOB

26.33

5.83 x

7.27 x

498.25

24912.83

GRU4Rec_Tensorflow

Correct Exp

10.75

2.38 x

2.97 x

476.49

60990.52

KerasGRU4Rec#

Note

BPR-Max is not supported by KerasGRU4Rec

Metrics#

Implementation

Variant

Recall@1

MRR@1

Recall@5

MRR@5

Recall@10

MRR@10

Recall@20

MRR@20

GRU4Rec Official

Best params

0.0647

0.0647

0.2220

0.1181

0.3414

0.1339

0.4874

0.1440

GRU4Rec Official

KerasGRU4Rec params

0.0572

0.0572

0.1962

0.1042

0.3003

0.1178

0.4304

0.1268

GRU4Rec Official

KerasGRU4Rec params

0.0604

0.0604

0.2010

0.1086

0.3042

0.1223

0.4320

0.1311

KerasGRU4Rec

OOB

0.0511

0.0511

0.1723

0.0920

0.2704

0.1049

0.3922

0.1133

KerasGRU4Rec

Correct exp

0.0518

0.0518

0.1774

0.0945

0.2694

0.1066

0.3853

0.1146

KerasGRU4Rec

Correct full

0.0510

0.0510

0.1755

0.0935

0.2699

0.1060

0.3869

0.1141

Note

BPR-Max is not supported by KerasGRU4Rec

Metric difference compared to the “Best params” version with the corresponding loss#

Implementation

Variant

Recall@1 Diff

MRR@1 Diff

Recall@5 Diff

MRR@5 Diff

Recall@10 Diff

MRR@10 Diff

Recall@20 Diff

MRR@20 Diff

GRU4Rec Official

Best params

GRU4Rec Official

KerasGRU4Rec params

-11.66%

-11.66%

-11.62%

-11.83%

-12.02%

-11.98%

-11.70%

-12.00%

GRU4Rec Official

KerasGRU4Rec params

-6.72%

-6.72%

-9.43%

-8.02%

-10.89%

-8.65%

-11.37%

-8.99%

KerasGRU4Rec

OOB

-21.10%

-21.10%

-22.38%

-22.09%

-20.80%

-21.61%

-19.53%

-21.32%

KerasGRU4Rec

Correct exp

-19.91%

-19.91%

-20.08%

-20.02%

-21.08%

-20.36%

-20.94%

-20.44%

KerasGRU4Rec

Correct full

-21.27%

-21.27%

-20.94%

-20.82%

-20.92%

-20.81%

-20.61%

-20.81%

Note

BPR-Max is not supported by KerasGRU4Rec

Hyperparameters used in the experiment#

GRU4Rec Official

GRU4Rec Official

GRU4Rec Official

KerasGRU4Rec

KerasGRU4Rec

KerasGRU4Rec

Variant

Best params

KerasGRU4Rec params

KerasGRU4Rec params

OOB

Correct exp

Correct full

loss

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

cross-entropy

optim

adagrad

adagrad

adagrad

adam

adagrad

adagrad

constrained_embedding

True

False

False

False

False

False

embedding

0

0

0

0

0

0

final_act

softmax

softmax

softmax

softmax

softmax

softmax

layers

192

192

192

192

192

192

batch_size

128

128

128

100

128

128

dropout_p_embed

0.45

0

0

N/A

N/A

N/A

dropout_p_hidden

0.15

0.15

0.15

0.25

0.15

0.15

learning_rate

0.1

0.1

0.1

0.001

0.1

0.1

momentum

0

0

0

N/A

N/A

N/A

n_sample

2048

2048

ALL

N/A

N/A

N/A

sample_alpha

0

0

N/A

N/A

N/A

N/A

bpreg

0

0

0

N/A

N/A

N/A

logq

1

0

N/A

N/A

N/A

N/A

Note

BPR-Max is not supported by KerasGRU4Rec

Runtime metrics#

Implementation

Variant

Avg. epoch time (s)

Avg. epoch time to Best

Avg. epoch time to Matching

Avg. mb/s

Avg. e/s

GRU4Rec Official

Best params

4.52

1134.52

144959.00

GRU4Rec Official

KerasGRU4Rec params

4.06

0.90 x

1264.57

161575.00

GRU4Rec Official

KerasGRU4Rec params

74.84

16.56 x

18.43 x

68.58

8763.00

KerasGRU4Rec

OOB

359.31

79.49 x

88.50 x

14.26

1824.70

KerasGRU4Rec

Correct exp

355.51

78.65 x

87.56 x

14.45

1850.14

KerasGRU4Rec

Correct full

367.03

81.20 x

90.40 x

13.96

1786.86