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Implicit feedback

* + The practical scenario

* + Collected by passive monitoring
* + Available in large quantities

* - Preferences are not explicit

* - Noisy positive feedback

* - No negative feedback

* - Missing feedback needs to be handled
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Context

* Context: Additional side information that can help refining
the recommendations and tailoring them in order to fit the
users' actual needs better.

* Context helps:
* Dealing with context related effects during training
= Adapting recommendation lists during recommendation time

* Types
= User side information: user metadata, social networks, etc.

= [tem side information: item metadata, etc.
= Context of transactions: time, location, device, etc.
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Factorization

* Project entities into a low dimensional latent feature
space

* The interaction between the representations estimate
the preferences
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Context-aware algorithms [1,2]

|
* ITALS /iTALSX * Models for different problems
B eenceestinaiion = Low number of features, sparser data >
= ALS learning iTALSx
= Scales linearly with the number of transactions = Denser data using higher number of
= Different models features is possible 2 iTALS
N-way model (iTALS) Pairwise interaction model (iTALSx)
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Speeding up ALS [3]

* ALS scales cubically (quadratically in practice) with the
number of features

» Bottleneck: solving a K X K system of linear equations
= Highly impractical to use high factor models

* Approximate solutions for speed-up
= ALS-CG: conjugate gradient based direct approximation of ALS
o Efficiency depends on matrix-vector multiplication

= ALS-CD: optimize on a feature-by-feature basis (instead of
computing whole feature vectors)

o Implicit case: lots of negative examples = compression
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Speed-up results

* Accuracy similar to ALS

ALS-CG  620f75(82.67%) 100f75(13.33%) 3 0of 75 (4%)
ALS-CD 57 of 75 (76%) 16 of 75 (21.33%) 2 of 75 (2.67%)

* Significant speed-up 000

= Better trade-offs (accuracy vs. time)

= More efficient resource usage 1500

n
* Linear scaling with the number of 21000 .
features (in practice) == B S T L

» High factor models are usable >00 e -
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GFF: General Factorization Framework [4]

An algorithm that allows experimentation with novel models for the context-

aware recommendation problem, that are not restricted to the two main model
classes used by the state-of-the-art.

* Motivation

» Np dimensions = lots of different possible preference models

* Standard models not necessarily fit the problem (e.q. asymmetry)
» lack of tool that has this flexibility

* Features
= No restriction on the context
» large preference model class
= Datatypeindependence
» Flexibility
= Scalability
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Novel preference models with GFF (1)

* |nteractions with context

= User-item

= User-context-item
(reweighting)

= User-context (bias)
= |[tem-context (bias)
= Context-context?

°* A4D problem
= Users (U)
= |tems (1)
= Seasonality (5)
= Sequentiality (Q)

* Traditional models

N-way (USQI)
Pairwise (Ul+US+IS+UQ+10+S0Q)

* Novel models

Interaction (UI+USI+UQI)
Context-interaction (USI+UQI)

Reduced pairwise
(UI+US+IS+UQ+1Q)

User bias (UI+US+UQ)

ltem bias (UI+UQ+1Q)

(Other interesting ones: UI+USQI;
Ul+USI+UQI+USQI; USI+UQI+USQIl)
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Novel preference models with GFF (2)

‘ Traditional MF
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Performance of novel models

Grocer VoD
+8.23%
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Dataset | Best model Improvement Novel better
(over traditional) than traditional

Grocery Ul+USI+UaQl +20.14% 3of5
TV1 USI+ual +15.37% 20f5
TV2 Ul+USI+UQl +30.30% 4 of 5
LastFM Ul+USI+UQl +12.40% 3of5
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Automatic model learning for GFF

* Flexibility of GFF

= Useful for experimentation

* Finding the best (or fairly good) model requires lots of
experiments for a new setup

* Automatize model selection

= \\Which contexts should be used?
= \Which interactions should be used?

X



Model selection with LARS

|
* Model: Ul+US+IS+USI+UQ+IQ+UQI+USQI+USQ+ISQ+50

* Each term contributes to the prediction of the
preferences

* Terms are the features

* Inferred preferences (0/1) are the target
= For every possible (u,i,s,q) combination

= \Weighting: multiply examples of positive feedback by the
weight
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Efficiency of the model selection

* Lot of examples - efficiency?

* Efficient LARS implementations require only the
» Covariance of features
= Correlation of features with the target

* B8 Yuisg Wuisgl Uy 0 S)1T(Uy o I; 0 Q)
= Sum has many members

* Can be computed efficiently
O(N*tK? + SyK? + S;K? + SsK? + SuK?)
* Precomputed covariance matrices and sums of vectors required
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Interaction of dimensions

]
* \When to use the model selection?

* Dimension interact

= One ALS epoch modifies a certain feature to be optimal with the current
model

= Different terms optimize for different aspects (e.g. USI and IS)

= Shared features will be suboptimal to either but may lean to one side
o Problems with unbiased selection

* Handle terms or groups of terms separately
= Hard to integrate into solution
= Requires multiple instances of feature matrices
» |[ncreases model complexity
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Selection strategies

* Joint pretraining (few epochs), model selection, training
selected model

* Multiple iterations of pretraining and selecting

* Joint training of a few terms, extend to full model using the
trained features, (additional training), selection, train

* Separate training, model selection, (merge separate feature
matrices for the same dimension), (training)

* Separate training, model selection, train non selected
members on the residual
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Context-related research

* Non-conventional context
» Standard context: entity based

»= Other types
o Hierarchical
o Composite
o Ordered
o Continuous

* Context quality
= General quality
= Suitability for a model or interaction type
* |mproving quality by splitting/combining context-states
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Thank you!
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