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Why Deep Learning?

30%

20%

10%

o

0%

—
—h

2010

N

0 2012 2013 2014

215

ImageNet challenge error rates (red line = human performance)

Percentage error

20

Word error rate on Switchboard trained against the Hub5'00 dataset

) == Human performance

Deep Speech

.DNN-HMM

Deep Speech + FSH

o
201 RNNLM
Oeiig'

w-w Microsoft 2016
CNN-LSTM

2012 2013 2014 2015 2016 2017


http://www.slideshare.net/nervanasys/sd-meetup-12215

Why Deep Learning?
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Complex Architectures
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Neural Networks are Universal Function
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Inspiration for Neural Learning




Neural Model
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Feedforward Multilayered Network
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Learning
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Stochastic Gradient Descent

* Generalization of (Stochastic) Gradient Descent
1
b= §(f - y)°
f=w'x

for 1=12,...,n
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Stochastic Gradient Descent




Backpropagation
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Backpropagation

* Does not work well in plain a
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Modern Deep Networks

* Ingredients:

e Rectified Linear Activation
function a.k.a. ReLu

o(x) =max(0, )

o(z) =maz(az,z) a<l
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After applying dropout.
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* Ingredients:
* Dropout:




Modern Deep Networks

* Ingredients:

* Mini-batches:
— Stochastic Gradient Descent

— Compute gradient over many (50 -100) data points
(minibatch) and update.



Modern Deep Networks

* Ingredients:

* Softmax output: | ﬁlﬁl

Py = jlx) =




Modern Deep Networks

* Ingredients:

e Categorical cross-entropy loss:



Modern Deep Networks

* Ingredients:

e Batch normalization:

o(k) . « (k) _ E[:c(k)]
\/Va/r'[x(k)]




Modern Feedforward Networks

* Ingredients:

* Adagrad a.k.a. adaptive learning rates
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Deep Learning for RecSys

* Feature extraction directly from the content
* Image, text, audio, etc.
* Instead of metadata
* For hybrid algorithms

* Heterogenous data handled easily
* Dynamic/Sequential behaviour modeling with RNNs

* More accurate representation learning of users and items
* Natural extension of CF & more

* RecSys is a complex domain

e Deep learning worked well in other complex domains
 Worth a try



Research directions in DL-RecSys

* As of 2017 summer, main topics:
* Learning item embeddings
e Deep collaborative filtering
* Feature extraction directly from content
* Session-based recommendations with RNN

e And their combinations



Best practices

e Start simple
 Add improvements later

e Optimize code
* GPU/CPU optimizations may differ

 Scalability is key

* Opensource code

* Experiment (also) on public datasets

* Don’t use very small datasets

* Don’t work on irrelevant tasks, e.g. rating prediction



ltem embeddings & 2vec models




Embeddings

 Embedding: a (learned) real value vector
representing an entity

— Also known as:
 Latent feature vector
e (Latent) representation

— Similar entities’ embeddings are similar

 Use in recommenders:

— Initialization of item representation in more advanced
algorithms

— ltem-to-item recommendations



Matrix factorization as learning

embeddings

MF: user & item embedding learning

— Similar feature vectors
* Two items are similar
* Two users are similar

Q
cC

* User prefers item

— MF representation as a simplictic neural
network
* Input: one-hot encoded user ID

* Input to hidden weights: user feature
matrix

* Hidden layer: user feature vector

* Hidden to output weights: item feature
matrix

* OQOutput: preference (of the user) over the
items
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[Mikolov et. al, 2013a]

* Representation learning of words
Shallow model

Data: (target) word + context pairs
— Sliding window on the document

— Context = words near the target

* In sliding window £ —
. o here there's alwilllkhere's a ws
* 1-5 words in both directions (where there's sjwilljthere's a way

Two models |
— Continous Bag of Words (CBOW) Target Word
— Skip-gram

Word’s Context (Window = 3)




Word2Vec - CBOW

Continuous Bag of Words

Maximalizes the probability of the target word given the
context

Model

Input: one-hot encoded words
Input to hidden weights
* Embedding matrix of words
Hidden layer
* Sum of the embeddings of the words in the context
Hidden to output weights
Softmax transformation
* Smooth approximation of the max operator
* Highlights the highest value

e’i

* S5; = ——, (r;: scores)
i N T’
Zj:l e J J

Output: likelihood of words of the corpus given the context

Embeddings are taken from the input to hidden matrix

Hidden to output matrix also has item representations (but not
used)

word(t)

|

Classifier
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Word2Vec — Skip-gram

word(t-2) word(t-1) word(t+1) word(t+2)

 Maximalizes the probability of the Classifer
context, given the target word 7
* Model Wy
— Input: one-hot encoded word
— Input to hidden matrix: embeddings E
— Hidden state 0

* Item embedding of target word(t)

— Softmax transformation

oAl Wi},
— Output: likelihood of context words Ky
(given the input word) sorrex
{ri}f'v=1
* Reported to be more accurate "
E
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Geometry of the Embedding Space

King - Man + Woman = Queen
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Paragraph2vec, doc2vec

[Le & Mikolov, 2014]

Learns representation of
paragraph/document

Based on CBOW model

Paragraph/document
embedding added to the
model as global context

paragraph ID word(t-2) word(t-1) word(t+1) word(t+2)



...2vec for Recommendations

Replace words with items in a session/user profile

Classifier
N\
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Prod2Vec

[Grbovic et. al, 2015]

purchases of user Un
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pro2vec skip-gram model on products



Bagged Prod2Vec

[Grbovic et. al, 2015]

emails of user Un

Projection

m-th email

bagged-prod2vec model updates



User-Prod2Vec

[Grbovic et. al, 2015]
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Utilizing more information

meta(t-1) item(t-1) item(t) meta(t+1) item(t+2)

* Meta-Prod2vec [Vasile et. al, 2016]
— Based on the prod2vec model

- UseS Item metadata Classifier Classifier Classifier Classifier Classifier
* Embedded metadata
* Added to both the input and the context

— Losses between: target/context item/metadata = |
* Final loss is the combination of 5 of these losses \

 Content2vec [Nedelec et. al, 2017]

— Separate modules for multimodel information I
* CF: Prod2vec 3
* |Image: AlexNet (a type of CNN)
* Text: Word2Vec and TextCNN

— Learns pairwise similarities
* Likelihood of two items being bought together

item(t) meta(t)
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Deep Collaborative Filtering



CF with Neural Networks

* Natural application area
 Some exploration during the Netflix prize
e E.g.:NSVD1 [Paterek, 2007]

Asymmetric MF

The model:

* Input: sparse vector of interactions
— Item-NSVD1: ratings given for the item by users
» Alternatively: metadata of the item
— User-NSVD1: ratings given by the user

* Input to hidden weights: ,,secondary” feature vectors
» Hidden layer: item/user feature vector
* Hidden to output weights: user/item feature vectors
* OQutput:
— Item-NSVD1: predicted ratings on the item by all users
— User-NSVD1: predicted ratings of the user on all items

Training with SGD
Implicit counterpart by [Pilaszy et. al, 2009]
No non-linarities in the model

Predicted ratings

Iltem feature
vectors

User features

Secondary feature
vectors

Ratings of the user




Restricted Boltzmann Machines (RBM) for

recommendation

* RBM

— Generative stochastic neural network
— Visible & hidden units connected by (symmetric) weights
* Stochastic binary units
* Activation probabilities:
= p(hj =1fv) = o(b]* + Xy wivi)
— p(v; =11h) = a(b + X}y w; jhy)
— Training
* Set visible units based on data
* Sample hidden units

* Sample visible units
* Modify weights to approach the configuration of visible units to the data

* Inrecommenders [Salakhutdinov et. al, 2007]

— Visible units: ratings on the movie

* Softmax unit
— Vector of length 5 (for each rating value) in each unit
— Ratings are one-hot encoded
* Units correnponding to users who not rated the movie are ignored

— Hidden binary units




Deep Boltzmann Machines (DBM)

* Layer-wise training

— Train weights between
visible and hidden units in
an RBM

— Add a new layer of hidden
units

— Train weights connecting
the new layer to the
network

» All other weights (e.g.

visible-hidden weights) are
fixed




Autoencoders

— One hidden layer
— Same number of input and output units I
— Try to reconstruct the input on the output
— Hidden layer: compressed representation of the data Reconstructed output

* Constraining the model: improve generalization

— Sparse autoencoders
* Activations of units are limited
* Activation penalty
* Requires the whole train set to compute

— Denoising autoencoders [Vincent et. al, 2008]
* Corrupt the input (e.g. set random values to zero) Corru pted input
* Restore the original on the output
* Deep version
— Stacked autoencoders
— Layerwise training (historically)
— End-to-end training (more recently)

Hidden layer




Autoencoders for recommendation

* Reconstruct corrupted user interaction vectors
— CDL [Wang et. al, 2015]

Collaborative Deep Learning

Uses Bayesian stacked denoising autoencoders
Uses tags/metadata instead of the item ID



Autoencoders for recommendation

* Reconstruct corrupted user interaction vectors
— CDAE [Wu et. al, 2016]
Collaborative Denoising Auto-Encoder

Input Hidden Output
Layer Layer Layer

_yul

Additional user node onthe ™
input and bias node beside “
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Recurrent autoencoder

* CRAE [Wang et. al, 2016]

— Collaborative Recurrent Autoencoder
— Encodes text (e.g. movie plot, review)
— Autoencoding with RNNs

* Encoder-decoder architecture

* The input is corrupted by replacing words with a
deisgnated BLANK token

— CDL model + text encoding simultaneously

 Joint learning



DeepCF methods

e MV-DNN [Elkahky et. al, 2015]

— Multi-domain recommender

— Separate feedforward networks for user and items per domain
(D+1 networks)

e Features first are embedded
* Run through several layers




DeepCF methods

e TDSSM [Song et. al, 2016]

 Temporal Deep Semantic Structured Model

e Similar to MV-DNN

* User features are the combination of a static and a temporal part
* The time dependent part is modeled by an RNN

Item l
L B B
static
features
embed(I)

USEF

?ézaj:res ot ”‘ﬁl O R(UD)
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DeepCF methods

* Coevolving features [Dai et. al, 2016]

e Users’ taste and items’ audiences change over time
* User/item features depend on time and are composed of
* Time drift vector
 Self evolution
* Co-evolution with items/users
* Interaction vector
Feature vectors are learned by RNNs
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DeepCF methods

* Product Neural Network (PNN) [Qu et. al, 2016] kf)
— For CTR estimation Ay Comecs 2000 00|
— Embed features FuyConnected u[O0 0~ 00]
— Pairwise layer: all pairwise combination
of embedded features iy
* Like Factorization Machines
* Outer/inner product of feature vectors or both omossarg ot S et | [ reawez | o [ resren
— Several fully connected layers T I
e CF-NADE [Zheng et. al, 2016] reas || resz | F‘j

— Neural Autoregressive Collaborative Filtering
— User events = preference (0/1) + confidence (based on occurence)

— Reconstructs some of the user events based on others (not the full set)
* Random ordering of user events
* Reconstruct the preference i, based on preferences and confidences up to i-1

— Loss is weighted by confidences



Applications: app recommendations

* Wide & Deep Learning [Cheng et. al, 2016]
* Ranking of results matching a query

e Combination of two models

— Deep neural network
* On embedded item features
* ,Generalization” I |

— Linear model | Concatonsted Embosdings (1200 demsnsios) | ot
* On embedded item features T ] o [
* And cross product of item features |1 wi e || i oo | vt | e
 ,Memorization” Continuous Features Categorical Features

— Joint training
— Logistic loss
* Improved online performance
— +2.9% deep over wide
— +3.9% deep+wide over wide

Logistic Loss

RelLU (256) |

ReLU (512) |




Applications: video recommendations

"~ approx.topN |
PP P ! class probabilities

H — videowectors Uy
! nearest neighbor
| e s,

training

* YouTube Recommender [Covington et. al, 2016]
— Two networks

— Candidate generation | Reis |

) . ) [ watchvector | _search vector | I 70 Pl I O
* Recommendations as classification

— Items clicked / not clicked when were recommended
* Feedforward network on many features

— Average watch embedding vector of user (last few items)

— Average search embedding vector of user (last few searches)
— User attributes

— Geographic embedding
* Negative item sampling + softmax

— Reranking

* More features
— Actual video embedding
— Average video embedding of watched videos
— Language information

serving

example age
gender
geographic
embedding

|G IV I3 I B Y/ I

|
| | l

T
— Time since last watch \/
- EtC language
2 |embedding

normalize
) ) ) . . - normalize
* Weighted logistic regression on the top of the network %\/\ /

1 " # previous
user language video language impressions
time since
impression video ID - + . watched video IDs last watch
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Feature Extraction from Content




Content features in recommenders

e Hybrid CF+CBF systems
— Interaction data + metadata

 Model based hybrid solutions

— Initiliazing
* Obtain item representation based on metadata
e Use this representation as initial item features

— Regularizing
* Obtain metadata based representations
* The interaction based representation should be close to the metadata based
e Add regularizing term to loss of this difference

— Joining
* Obtain metadata based representations

* Have the item feature vector be a concatenation
— Fixed metadata based part
— Learned interaction based part



Feature extraction from content

* Deep learning is capable of direct feature extraction
— Work with content directly
— Instead (or beside) metadata
* Images
— E.g.: product pictures, video thumbnails/frames
— Extraction: convolutional networks
— Applications (e.g.):
* Fashion
* Video
e Text
— E.g.: product description, content of the product, reviews

— Extraction
* RNNs
* 1D convolution networks
*  Weighted word embeddings
* Paragraph vectors
— Applications (e.g.):
*  News
*  Books
* Publications

*  Music/audio
— Extraction: convolutional networks (or RNNs)



Convolutional Neural Networks (CNN)

e Speciality of images
— Huge amount of information
* 3 channels (RGB)
* Lots of pixels

 Number of weights required to fully connect a 320x240
image to 2048 hidden units:

— 3*320*240*%2048 = 471,859,200
— Locality

* Objects’ presence are independent of their location or
orientation

* Objects are spatially restricted



Convolutional Neural Networks (CNN)

* Image input
— 3D tensor
* Width
* Height
* Channels (R,G,B)
* Text/sequence inputs
— Matrix
— of one-hot encoded entities
* Inputs must be of same size
— Padding
e (Classic) Convolutional Nets
— Convolution layers
— Pooling layers
— Fully connected layers



Convolutional Neural Networks (CNN)

*  Convolutional layer (2D)

—  Filter
* Learnable weights, arranged in a small tensor (e.g. 3x3xD)
— The tensor’s depth equals to the depth of the input
* Recognizes certain patterns on the image
— Convolution with a filter
*  Apply the filter on regions of the image

— Yap = F(ZijkWijsliva-1,jp-14)
»  Filters are applied over all channels (depth of the input tensor)
»  Activation function is usually some kind of ReLU
Start from the upper left corner
Move left by one and apply again
— Once reaching the end, go back and shift down by one
e Result: a 2D map of activations, high at places corresponding to the pattern recognized by the filter
— Convolution layer: multiple filters of the same size
* Inputsize (W; X W, X D)
* Filtersize (F X F X D)
e Stride (shift value) (S)
¢  Number of filters (N)

. Outputsize: (g + 1) x (% + 1) x N
¢ Number of weights: F X F X D X N
— Another way to look at it:
* Hidden neurons organized in a (? + 1) X (WZS_F + 1) X N tensor

*  Weights a shared between neurons with the same depth
* Aneuron processe an F X F X D region of the input
* Neighboring neurons process regions shifted by the stride value




Convolutional Neural Networks (CNN)

* Pooling layer
— Mean pooling: replace an R X R region with the mean of the values
— Max pooling: replace an R X R region with the maximum of the values
— Used to quickly reduce the size

— Cheap, but very aggressive operator
* Avoid when possible
* Often needed, because convolutions don’t decrease the number of inputs fast enough

— Inputsize: W; X W, X N
Wy W,

— Output size: = X = X N
* Fully connected layers

— Final few layers

— Each hidden neuron is connected with every neuron in the next layer
* Residual connections (improvement) [He et. al, 2016]

— Very deep networks degrade performance

— Hard to find the proper mappings
— Reformulation of the problem: F(x) = F(x)+x




Convolutional Neural Networks (CNN)

e Some examples

* GoogleNet [Szegedy et. =] ] o] [

en

Convolution

ooooooo
CCCCCC
@ Dropout
@» Fully connected
-

* ResNet (up to 200+ layers) [He et. al, 2016]



Images in recommenders

 [McAuley et. Al, 2015]

— Learns a parameterized distance metric over visual
features
* Visual features are extracted from a pretrained CNN

* Distance function: Eucledian distance of ,embedded” visual
features

— Embedding here: multiplication with a weight matrix to reduce
the number of dimensions

— Personalized distance
* Reweights the distance with a user specific weight vector
— Training: maximizing likelihood of an existing
relationship with the target item
e Over uniformly sampled negative items



Images in recommenders

e Visual BPR [He & McAuley, 2016]

— Model composed of

* Bias terms
e MF model

e Visual part
— Pretrained CNN features
— Dimension reduction through ,,embedding”

— The product of this visual item feature and a learned user feature vector is used in the
model

* Visual bias
— Product of the pretrained CNN features and a global bias vector over its features

— BPR loss
— Tested on clothing datasets (9-25% improvement)
b 4096 1 Fx1
ﬁ ltem

Arch. by Krizhevsky et al. Latent Factors Biases
i

ST . . D=1
Deep CNN -

_ ltem Visual  Item User
Visual Features Factors Factors Factors




Music representations

e [Oord et. al, 2013]

— Extends iALS/WMF with audio
features
* To overcome cold-start

— Music feature extraction

* Time-frequency representation

* Applied CNN on 3 second
samples

* Latent factor of the clip: average
predictions on consecutive
windows of the clip

— Integration with MF
global

* (@) Minimize distance between gHL- sompors
music features and the MF’s pooling
feature vectors

* (b) Replace the item features
with the music features
(minimize original loss)
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2% 512
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Textual information improving

recommendations

 [Bansal et. al, 2016]
— Paper recommendation

— Item representation
* Text representation

— Two layer GRU (RNN): bidirectional layer followed by a unidirectional layer
— Representation is created by pooling over the hidden states of the sequence
* |D based representation (item feature vector)

* Final representation: ID + text added
— Multi-task learning
* Predict both user scores
* And likelihood of tags
— End-to-end training
* All parameters are trained simultaneously (no pretraining)
* Loss

— User scores: weighted MSE (like in iALS)
— Tags: weighted log likelihood (unobserved tags are downweighted)
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Session-based Recommendations with

NS



Recurrent Neural Networks

e Input: sequential information ({x;}/_1)
* Hidden state (h;):

— representation of the sequence so far

— influenced by every element of the sequence up
tot

¢ h’t =f(WXt + Uh’t—l +b)



RNN-based machine learning

* Sequence to value
— Encoding, labeling
— E.g.: time series classification

* Value to sequence
— Decoding, generation
— E.g.: sequence generation

* Sequence to sequence

— Simultaneous
* E.g.: next-click prediction
— Encoder-decoder architecture

* E.g.: machine translation

* Two RNNs (encoder & decoder)
— Encoder produces a vector describing the sequence J J J
» Last hidden state
» Combination of hidden states (e.g. mean pooling)
» Learned combination of hidden states 0
— Decoder receives the summary and generates a new sequence
» The generated symbol is usually fed back to the decoder

» The summary vector can be used to initialize the decoder
» Or can be given as a global context
* Attention mechanism (optionally)

V1 Y2 Y3

V1 Y2 Y3

X1 X2 X3

V1 Y2 Y3




Exploding/Vanishing gradients

¢ ht — f(Wxt + Uht—l + b)
* Gradient of hy wrt. x4

— Simplification: linear activations
* In reality: bounded
_dhy _ Ohy Bhpy OMpdhy _ -1y,
axl aht_]_ aht_z ahl axl
* [|U|l, < 1 - vanishing gradients

— The effect of values further in the past is neglected
— The network forgets

* [|U|l, > 1 - exploding gradients
— Gradients become very large on longer sequences
— The network becomes unstable




Handling exploding gradients

e Gradient clipping

— If the gradient is larger than a threshold, scale it back to
the threshold

— Updates are not accurate

— Vanishing gradients are not solved
* Enforce ||U||, =1

— Unitary RNN

— Unable to forget
* Gated networks

— Long-Short Term Memory (LSTM)

— Gated Recurrent Unit (GRU)

— (and a some other variants)



Long-Short Term Memory (LSTM)

[Hochreiter & Schmidhuber, 1999]

Instead of rewriting the hidden state during update,
add a delta

— St = S¢.1 + Asy

— Keeps the contribution of earlier inputs relevant
Information flow is controlled by gates

— Gates depend on input and the hidden state

— BetweenOand1

— Forget gate (f): 0/1 = reset/keep hidden state

— Input gate (i): 0/1 = don’t/do consider the contribution of
the input

— Output gate (0): how much of the memory is written to the
hidden state
Hidden state is separated into two (read before you
write)
— Memory cell (c): internal state of the LSTM cell

— Hidden state (h): influences gates, updated from the
memory cell

ft = O—(fot + Ufh't—l + bf)
it - O-(Wlxt + Uiht—l + bl)
Ot == O-(Woxt + UOht—l + bO)

Et == tanh(Wxt + Uht—l + b)

Ct=ftoCq tiroC;
h: = o; o tanh(c;)

e Canl
C)lw
R

N




Gated Recurrent Unit (GRU)

* [Cho et. al, 2014] ze = o(Wyx¢ + Uzhe_1 + by)
= o(W.x; + U.h,_, + b,
* Simplified information flow e = oW - )

— Single hidden state h, = tanh(Wx; + 15 0 Uh,_, + b)
— Input and forget gate merged - hy =zrohi_1 + (1 —2)0hy
update gate (z)

— No output gate

— Reset gate (r) to break
information flow from previous

hidden state X
* Similar performance to LSTM 4@> : ) P ERTY

> OUT




Session-based recommendations

* Sequence of events
— User identification problem
— Disjoint sessions (instead of consistent user history)

e Tasks
— Next click prediction
— Predicting intent
* Classic algorithms can’t cope with it well

— |ltem-to-item recommendations as approximation in
live systems

* Area revitalized by RNNs



GRU4Rec (1/3)

[Hidasi et. al, 2015]

Network structure

— Input: one hot encoded item ID

— Optional embedding layer

— GRU layer(s)

— Output: scores over all items

— Target: the next item in the session

Adapting GRU to session-based
recommendations

— Sessions of (very) different length & lots of short
sessions: session-parallel mini-batching

— Lots of items (inputs, outputs): sampling on the
output

— The goal is ranking: listwise loss functions on
pointwise/pairwise scores

-

~

ltemID (next)

[ ]
One-hot vector
N "/

i

/ Scores on items \

\ One-hot vector
£

GRU layer I

[ ltemID ]




GRU4Rec (2/3)

Session-parallel mini-batches
— Mini-batch is defined over sessions
— Update with one step BPTT

* Lots of sessions are very short Session3

* 2D mini-batching, updating on longer
sequences (with or without padding) didn’t
improve accuracy Session5

Sessionl

Session2

Session4

e Output sampling
— Computing scores for all items (100K — 1M) in

every step is slow l
— One posit.ive item (target)'+.severalsamples ot 50 57 5 A3 PRERG oy . alla
— Fast solution: scores on.rr'nnl-batch targgts o 52 ﬁ 3 ‘_,H 3 . e
* Items of the other mini-batch are negative 3 3 e DT BN
samples for the current mini-batch Y2l V3| Vi Vel 97 95| = e t Lo
XE = —1 e
* Loss functions = —log(sy), s; Zjstl yj
— Cross-entropy + softmax Ng ~ ~
— Average of BPR scores o Zj=1 log (O-(yi _ yj))
— TOP1 score (average of ranking error + BPR = N

regularization over score values) N R N N N A2
Zj=51 O-(yj - Yi) + ij1 O-(yj )

TOP1 =
Ng




GRU4Rec (3/3)

e Observations
— Similar accuracy with/without embedding

— Multiple layers rarely help
* Sometimes slight improvement with 2 layers
* Sessions span over short time, no need for multiple time scales

— Quick conversion: only small changes after 5-10 epochs

— Upper bound for model capacity

* No improvement when adding additional units after a certain
threshold

* This threshold can be lowered with some techniques
e Results
— 20-30% improvement over item-to-item recommendations



Improving GRU4Rec

Recall@20 on RSC15 by GRU4Rec: 0.6069 (100 units), 0.6322 (1000 units)
Data augmentation [Tan et. al, 2016]

Generate additional sessions by taking every possible sequence starting from the end of a session
Randomly remove items from these sequences

Long training times

Recall@20 on RSC15 (using the full training set for training): ~0.685 (100 units)

Bayesian version (RelLeVar) [Chatzis et. al, 2017]

Bayesian formulation of the model
Basically additional regularization by adding random noise during sampling

Recall@20 on RSC15: 0.6507 (1500 units)

New losses and additional sampling [Hidasi & Karatzoglou, 2017]

Use additional samples beside minibatch samples 035
Design better loss functions 0.30
— Ng Ns _2
* BPRax = —log (Zi=1 sja(ri - r])) +AX2, 7 0.25
0.030 0.025 0.014 _
0.025 A 0.020 0012 g 0.20
o 0010 o
0020 Seatt £ 0.015 z
é 0.015 ,.--"':,':g‘.‘- 8 % o008 +  BPR, 1st epoch 0.15 Loss
§ gome b o A
o.010 .. ,'::'. 0.004 § «  BPR-max, 10th epoch 0.10 ® XE
005 *oe 0.005 i ) ® TOP1-max
005 o e 0.002
- i ® BPR-max
DODO:‘ 5 10 15 20 25 30 35 U.UUUO 500 1000 1500 2000 (][][](JD 50 100 150 200 0.05
Rank Rank Rank 0 32 128 512 2048 8192 32768 ALL

Recall@20 on RSC15: 0.7119 (100 units) Additional samples



Extensions

Multi-modal information (p-RNN model) [Hidasi et. al, 2016]
— Use image and description besides the item ID
— One RNN per information source
— Hidden states concatenated
— Alternating training

ltem metadata [Twardowski, 2016]
— Embed item metadata
— Merge with the hidden layer of the RNN (session representation)
— Predict compatibility using feedforward layers

Contextualization [Smirnova & Vasile, 2017]
— Merging both current and next context
— Current context on the input module
— Next context on the output module
— The RNN cell is redefined to learn context-aware transitions

Personalizing by inter-session modeling

— Hierarchical RNNs [Quadrana et. al, 2017], [Ruocco et. al, 2017]
* One RNN works within the session (next click prediction)
* The other RNN predicts the transition between the sessions of the user
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Conclusions

* Deep Learning is now in RecSys

 Huge potential, but lot to do
— E.g. Explore more advanced DL techniques

* Current research directions
— ltem embeddings
— Deep collaborative filtering
— Feature extraction from content
— Session-based recommendations with RNNs

* Scalability should be kept in mind

* Don’t fall for the hype BUT don’t disregard the
achievements of DL and its potential for RecSys



Thank you!
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