Deep Learning for Recommender Systems

Alexandros Karatzoglou (Scientific Director @ Telefonica Research)
alexk@tid.es, @alexk_z

Balazs Hidasi (Head of Research @ Gravity R&D)
balazs.hidasi@gravityrd.com, @balazshidasi

RecSys’17, 29 August 2017, Como

Why Deep Learning?

30%

20%

10%

o

0%

—
—h

2010

N

0 2012 2013 2014

215

ImageNet challenge error rates (red line = human performance)

Percentage error

20

Word error rate on Switchboard trained against the Hub5'00 dataset

) == Human performance

Deep Speech

.DNN-HMM

Deep Speech + FSH

o
201 RNNLM
Oeiig'

w-w Microsoft 2016
CNN-LSTM

2012 2013 2014 2015 2016 2017

http://www.slideshare.net/nervanasys/sd-meetup-12215

Why Deep Learning?

hand-crafted
Feature Extractor

“Simple” Trainable
Classifier

Trainable
Feature Extractor

Trainable
Classifier

Complex Architectures

3 - 3
f :E Encoder LSTMs
) : T 0
; 1:“ 0 | }’_ ,’,

Word Representation

GPU3 |

GPU2 !

I-of-K coding

GPUL |

P H

(Economic, growth, has, slowed, down, in, recent, years, .

(4

Neural Networks are Universal Function

Approximators

10

Large NN

Medium NN

Performance
an

Small NN

“Traditional” ML alg

Amount of Data

Inspiration for Neural Learning

Neural Model

x1
wi

X2

G Activation Function
w3
> —(] I - +0

wn

>
W

Neuron a.k.a. Unit

activation
functon

X @ net input
- 2 net;

—"ﬂj

X; ._... activation
L transfer
: function

X Gf

. threshold

P /|
1 +e X o

P(oj =1Jz) = wam%—l—ﬁ

Il 4 | |
-6 -4 -2 0 2 4 6

Feedforward Multilayered Network

] hidden layer 1 hidden layer 2 hidden layer 3
input layer

::w S *‘#"#h

ﬂ‘\ 11:1"5-.',__

Learning

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

AN
@\
SN,
R

i

i
Rl i

: HATNARE

: :’."'l‘:s"-., ,;;T-.".-':ﬂ,,t*i" '='t ‘?\-"""

"%&*‘”E‘%‘rfﬂﬁiﬁ*&%
i

E SR

gy

Stochastic Gradient Descent

* Generalization of (Stochastic) Gradient Descent
1
b= §(f - y)°
f=w'x

for 1=12,...,n
wWi=w—1nVEx

Stochastic Gradient Descent

Backpropagation

A 3?;*'!

\ nutput layer

e e
, é}‘*af*ﬁ" N *ﬂ*{"’ﬁﬁ%ﬁ;’f.
SN '7’3" %“:x /
= " . ; m %k.
=\ =?"“f‘_'

" ﬁ.:; ‘;:":.r.l .ﬂn.""w‘lln.'.;i:"i I-' 1“_: =7,
=7 4 "5 4?5--* e "'i""*‘.__ 3 _.:"r_ o R
5 %..-L e ’f: { ﬁ""?‘ Vik
o ¥ Sy i .. iy ...-: -ﬁ' 3 '-'T" :-'b
: ﬂ? ey ﬁ.} -@g N S M
€.¢ SQ==

qT

W3 (W V,E)

Backpropagation

* Does not work well in plain a

III

norma
Vanishing Gradients
Slow Learning

SVM'’s easier to train
2"d Neural Winter

multilayer deep network

Modern Deep Networks

* Ingredients:

e Rectified Linear Activation
function a.k.a. ReLu

o(x) =max(0,)

o(z) =maz(az,z) a<l

.....................

After applying dropout.

)

b

(

.,.‘.,.‘.
//ﬂ@\?l\\\
{1\ /1 %? \\w

..,;,u w@.ﬁ X uﬁ.
P
4 .for,‘%%.\!ﬁ‘%br

45«.3 A X
(ALK (AL
/XD ‘\ ORY
NN

a) Standard Neural Net

Vg
—
. -
O
=
i)
Q
Z
Q.
)
Q
)
C
. -
Q
o)
O
=

* Ingredients:
* Dropout:

Modern Deep Networks

* Ingredients:

* Mini-batches:
— Stochastic Gradient Descent

— Compute gradient over many (50 -100) data points
(minibatch) and update.

Modern Deep Networks

* Ingredients:

* Softmax output: | ﬁlﬁl

Py = jlx) =

Modern Deep Networks

* Ingredients:

e Categorical cross-entropy loss:

Modern Deep Networks

* Ingredients:

e Batch normalization:

o(k) . « (k) _ E[:c(k)]
\/Va/r'[x(k)]

Modern Feedforward Networks

* Ingredients:

* Adagrad a.k.a. adaptive learning rates

- SGD
SGD
] —— Momentum
Y/
Momentum /[-~ NAG
NAG i — Ad d
Adagrad %’l;’” i o
i Ly Adadelta
Adadelta 4 i
Rmsprop
2

1.0

Deep Learning for RecSys

* Feature extraction directly from the content
* Image, text, audio, etc.
* Instead of metadata
* For hybrid algorithms

* Heterogenous data handled easily
* Dynamic/Sequential behaviour modeling with RNNs

* More accurate representation learning of users and items
* Natural extension of CF & more

* RecSys is a complex domain

e Deep learning worked well in other complex domains
 Worth a try

Research directions in DL-RecSys

* As of 2017 summer, main topics:
* Learning item embeddings
e Deep collaborative filtering
* Feature extraction directly from content
* Session-based recommendations with RNN

e And their combinations

Best practices

e Start simple
 Add improvements later

e Optimize code
* GPU/CPU optimizations may differ

 Scalability is key

* Opensource code

* Experiment (also) on public datasets

* Don’t use very small datasets

* Don’t work on irrelevant tasks, e.g. rating prediction

ltem embeddings & 2vec models

Embeddings

 Embedding: a (learned) real value vector
representing an entity

— Also known as:
 Latent feature vector
e (Latent) representation

— Similar entities’ embeddings are similar

 Use in recommenders:

— Initialization of item representation in more advanced
algorithms

— ltem-to-item recommendations

Matrix factorization as learning

embeddings

MF: user & item embedding learning

— Similar feature vectors
* Two items are similar
* Two users are similar

Q
cC

* User prefers item

— MF representation as a simplictic neural
network
* Input: one-hot encoded user ID

* Input to hidden weights: user feature
matrix

* Hidden layer: user feature vector

* Hidden to output weights: item feature
matrix

* OQOutput: preference (of the user) over the
items

rn 12 rn 2) =u1y rn S/

Wi

u

Wy

0,0,..010,0,..0

Y\e]gs PAV/=Io

[Mikolov et. al, 2013a]

* Representation learning of words
Shallow model

Data: (target) word + context pairs
— Sliding window on the document

— Context = words near the target

* In sliding window £ —
. o here there's alwilllkhere's a ws
* 1-5 words in both directions (where there's sjwilljthere's a way

Two models |
— Continous Bag of Words (CBOW) Target Word
— Skip-gram

Word’s Context (Window = 3)

Word2Vec - CBOW

Continuous Bag of Words

Maximalizes the probability of the target word given the
context

Model

Input: one-hot encoded words
Input to hidden weights
* Embedding matrix of words
Hidden layer
* Sum of the embeddings of the words in the context
Hidden to output weights
Softmax transformation
* Smooth approximation of the max operator
* Highlights the highest value

e’i

* S5; = ——, (r;: scores)
i N T’
Zj:l e J J

Output: likelihood of words of the corpus given the context

Embeddings are taken from the input to hidden matrix

Hidden to output matrix also has item representations (but not
used)

word(t)

|

Classifier

Tt 1t 1

word(t-2) word(t-1) word(t+1) word(t+2)

{p(w; If)}f-"_1
softax

{r; {_\I_ 1

w

E
0,1,00,10,0,10,1

Word2Vec — Skip-gram

word(t-2) word(t-1) word(t+1) word(t+2)

 Maximalizes the probability of the Classifer
context, given the target word 7
* Model Wy
— Input: one-hot encoded word
— Input to hidden matrix: embeddings E
— Hidden state 0

* Item embedding of target word(t)

— Softmax transformation

oAl Wi},
— Output: likelihood of context words Ky
(given the input word) sorrex
{ri}f'v=1
* Reported to be more accurate "
E

0,0,0,0,1,0,0,0,0,0

Geometry of the Embedding Space

King - Man + Woman = Queen

/\
K‘-.'l"l%
/ \/ecvor
/7
// - e R @usen Cum()uh:\\:\ﬁﬂ
= T oman

Paragraph2vec, doc2vec

[Le & Mikolov, 2014]

Learns representation of
paragraph/document

Based on CBOW model

Paragraph/document
embedding added to the
model as global context

paragraph ID word(t-2) word(t-1) word(t+1) word(t+2)

...2vec for Recommendations

Replace words with items in a session/user profile

Classifier
N\
%
lt_2 lt—1 Lt lt12
/ N\ / /

1t 1 1

item(t-2) item(t-1) item(t+1) item(t+2)

Prod2Vec

[Grbovic et. al, 2015]

purchases of user Un

pi-1 Pzt | .

Projection

pi

i-th product

pro2vec skip-gram model on products

Bagged Prod2Vec

[Grbovic et. al, 2015]

emails of user Un

Projection

m-th email

bagged-prod2vec model updates

User-Prod2Vec

[Grbovic et. al, 2015]

‘F-____._- -
— el

’ Projection .

Un S| Pie | | Pit Pia |- | Pirc | ¢

user “ purchases of user Un e

=
-
- -
-

User embeddings for user to product predictions

Utilizing more information

meta(t-1) item(t-1) item(t) meta(t+1) item(t+2)

* Meta-Prod2vec [Vasile et. al, 2016]
— Based on the prod2vec model

- UseS Item metadata Classifier Classifier Classifier Classifier Classifier
* Embedded metadata
* Added to both the input and the context

— Losses between: target/context item/metadata = |
* Final loss is the combination of 5 of these losses \

 Content2vec [Nedelec et. al, 2017]

— Separate modules for multimodel information I
* CF: Prod2vec 3
* |Image: AlexNet (a type of CNN)
* Text: Word2Vec and TextCNN

— Learns pairwise similarities
* Likelihood of two items being bought together

item(t) meta(t)

References

[Barkan & Koenigstein, 2016] O. Barkan, N. Koenigstein: ITEM2VEC: Neural item embedding for
collaborative filtering. IEEE 26th International Workshop on Machine Learning for Signal Processing
(MLSP 2016).

[Grbovic et. al, 2015] M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla, V. Bhagwan, D.
Sharp: E-commerce in Your Inbox: Product Recommendations at Scale. 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’15).

[Le & Mikolov, 2014] Q. Le, T. Mikolov: Distributed Representations of Sentences and Documents.
31st International Conference on Machine Learning (ICML 2014).

[Mikolov et. al, 2013a] T. Mikolov, K. Chen, G. Corrado, J. Dean: Efficient Estimation of Word
Representations in Vector Space. ICLR 2013 Workshop.

[Mikolov et. al, 2013b] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean: Distributed
Representations of Words and Phrases and Their Compositionality. 26th Advances in Neural
Information Processing Systems (NIPS 2013).

[Morin & Bengio, 2005] F. Morin, Y. Bengio: Hierarchical probabilistic neural network language
model. International workshop on artificial intelligence and statistics, 2005.

[Nedelec et. al, 2017] T. Nedelec, E. Smirnova, F. Vasile: Specializing Joint Representations for the
task of Product Recommendation. 2nd Workshop on Deep Learning for Recommendations (DLRS
2017).

[Vasile et. al, 2016] F. Vasile, E. Smirnova, A. Conneau: Meta-Prod2Vec — Product Embeddings Using
Side-Information for Recommendations. 10th ACM Conference on Recommender Systems
(RecSys’16).

Deep Collaborative Filtering

CF with Neural Networks

* Natural application area
 Some exploration during the Netflix prize
e E.g.:NSVD1 [Paterek, 2007]

Asymmetric MF

The model:

* Input: sparse vector of interactions
— Item-NSVD1: ratings given for the item by users
» Alternatively: metadata of the item
— User-NSVD1: ratings given by the user

* Input to hidden weights: ,,secondary” feature vectors
» Hidden layer: item/user feature vector
* Hidden to output weights: user/item feature vectors
* OQutput:
— Item-NSVD1: predicted ratings on the item by all users
— User-NSVD1: predicted ratings of the user on all items

Training with SGD
Implicit counterpart by [Pilaszy et. al, 2009]
No non-linarities in the model

Predicted ratings

Iltem feature
vectors

User features

Secondary feature
vectors

Ratings of the user

Restricted Boltzmann Machines (RBM) for

recommendation

* RBM

— Generative stochastic neural network
— Visible & hidden units connected by (symmetric) weights
* Stochastic binary units
* Activation probabilities:
= p(hj =1fv) = o(b]* + Xy wivi)
— p(v; =11h) = a(b + X}y w; jhy)
— Training
* Set visible units based on data
* Sample hidden units

* Sample visible units
* Modify weights to approach the configuration of visible units to the data

* Inrecommenders [Salakhutdinov et. al, 2007]

— Visible units: ratings on the movie

* Softmax unit
— Vector of length 5 (for each rating value) in each unit
— Ratings are one-hot encoded
* Units correnponding to users who not rated the movie are ignored

— Hidden binary units

Deep Boltzmann Machines (DBM)

* Layer-wise training

— Train weights between
visible and hidden units in
an RBM

— Add a new layer of hidden
units

— Train weights connecting
the new layer to the
network

» All other weights (e.g.

visible-hidden weights) are
fixed

Autoencoders

— One hidden layer
— Same number of input and output units I
— Try to reconstruct the input on the output
— Hidden layer: compressed representation of the data Reconstructed output

* Constraining the model: improve generalization

— Sparse autoencoders
* Activations of units are limited
* Activation penalty
* Requires the whole train set to compute

— Denoising autoencoders [Vincent et. al, 2008]
* Corrupt the input (e.g. set random values to zero) Corru pted input
* Restore the original on the output
* Deep version
— Stacked autoencoders
— Layerwise training (historically)
— End-to-end training (more recently)

Hidden layer

Autoencoders for recommendation

* Reconstruct corrupted user interaction vectors
— CDL [Wang et. al, 2015]

Collaborative Deep Learning

Uses Bayesian stacked denoising autoencoders
Uses tags/metadata instead of the item ID

Autoencoders for recommendation

* Reconstruct corrupted user interaction vectors
— CDAE [Wu et. al, 2016]
Collaborative Denoising Auto-Encoder

Input Hidden Output
Layer Layer Layer

_yul

Additional user node onthe ™
input and bias node beside “

ﬁua

g
L]

the hidden layer

Yua

ﬁul’r] .yuﬁ
|

. Bias Node

User Nade

Recurrent autoencoder

* CRAE [Wang et. al, 2016]

— Collaborative Recurrent Autoencoder
— Encodes text (e.g. movie plot, review)
— Autoencoding with RNNs

* Encoder-decoder architecture

* The input is corrupted by replacing words with a
deisgnated BLANK token

— CDL model + text encoding simultaneously

 Joint learning

DeepCF methods

e MV-DNN [Elkahky et. al, 2015]

— Multi-domain recommender

— Separate feedforward networks for user and items per domain
(D+1 networks)

e Features first are embedded
* Run through several layers

DeepCF methods

e TDSSM [Song et. al, 2016]

 Temporal Deep Semantic Structured Model

e Similar to MV-DNN

* User features are the combination of a static and a temporal part
* The time dependent part is modeled by an RNN

Item l
L B B
static
features
embed(I)

USEF

?ézaj:res ot ”‘ﬁl O R(UD)
(Upase) /
U | []_.§ o 0 s ,_U

tempor, I m[}'

featur
[UJ

embed{U)

DeepCF methods

* Coevolving features [Dai et. al, 2016]

e Users’ taste and items’ audiences change over time
* User/item features depend on time and are composed of
* Time drift vector
 Self evolution
* Co-evolution with items/users
* Interaction vector
Feature vectors are learned by RNNs

ltem .I-u'rfa]ias item featura
=feature gy, (ta) = a(Vy - gl) ——=tiem profie
.'?E([:' 2

r l Fi ¥, JT:.[rl] -+ Evplution
j_l o a(+ul-j":'rj£"

. - 5 i Corvhent

Interaction ¥y (b = by Jf—eiDrif

/
—=feature -‘u-.llaa',h.qf]

U&‘-'Q;F

t
a0 / Initialize: user featura
/ / Funta) = oW - £) +——=Usor srfi

@

c_. =
3 ’
& ¢
. v o a @ User ﬂ / [Wy fo () Eviutian
. Jacopfeatire Allea /f fule) =4 L‘“’z "0, Ly e

Dawid Alice Christine
iA0) s
Wy (fy = ta)

= Conkaxt
Drift

DeepCF methods

* Product Neural Network (PNN) [Qu et. al, 2016] kf)
— For CTR estimation Ay Comecs 2000 00|
— Embed features FuyConnected u[O0 0~ 00]
— Pairwise layer: all pairwise combination
of embedded features iy
* Like Factorization Machines
* Outer/inner product of feature vectors or both omossarg ot S et | [reawez | o [resren
— Several fully connected layers T I
e CF-NADE [Zheng et. al, 2016] reas || resz | F‘j

— Neural Autoregressive Collaborative Filtering
— User events = preference (0/1) + confidence (based on occurence)

— Reconstructs some of the user events based on others (not the full set)
* Random ordering of user events
* Reconstruct the preference i, based on preferences and confidences up to i-1

— Loss is weighted by confidences

Applications: app recommendations

* Wide & Deep Learning [Cheng et. al, 2016]
* Ranking of results matching a query

e Combination of two models

— Deep neural network
* On embedded item features
* ,Generalization” I |

— Linear model | Concatonsted Embosdings (1200 demsnsios) | ot
* On embedded item features T] o [
* And cross product of item features |1 wi e || i oo | vt | e
 ,Memorization” Continuous Features Categorical Features

— Joint training
— Logistic loss
* Improved online performance
— +2.9% deep over wide
— +3.9% deep+wide over wide

Logistic Loss

RelLU (256) |

ReLU (512) |

Applications: video recommendations

"~ approx.topN |
PP P ! class probabilities

H — videowectors Uy
! nearest neighbor
| e s,

training

* YouTube Recommender [Covington et. al, 2016]
— Two networks

— Candidate generation | Reis |

) .) [watchvector | _search vector | I 70 Pl I O
* Recommendations as classification

— Items clicked / not clicked when were recommended
* Feedforward network on many features

— Average watch embedding vector of user (last few items)

— Average search embedding vector of user (last few searches)
— User attributes

— Geographic embedding
* Negative item sampling + softmax

— Reranking

* More features
— Actual video embedding
— Average video embedding of watched videos
— Language information

serving

example age
gender
geographic
embedding

|G IV I3 I B Y/ I

|
| | l

T
— Time since last watch \/
- EtC language
2 |embedding

normalize
))) . . - normalize
* Weighted logistic regression on the top of the network %\/\ /

1 " # previous
user language video language impressions
time since
impression video ID - + . watched video IDs last watch

References

[Cheng et. al, 2016] HT. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir, R.
Anil, Z. Haque, L. Hong, V. Jain, X. Liu, H. Shah: Wide & Deep Learning for Recommender Systems. 1st Workshop on Deep Learning for
Recommender Systems (DLRS 2016).

[Covington et. al, 2016] P. Covington, J. Adams, E. Sargin: Deep Neural Networks for YouTube Recommendations. 10th ACM Conference
on Recommender Systems (RecSys’16).

[Dai et. al, 2016] H. Dai, Y. Wang, R. Trivedi, L. Song: Recurrent Co-Evolutionary Latent Feature Processes for Continuous-time
Recommendation. 1st Workshop on Deep Learning for Recommender Systems (DLRS 2016).

[Elkahky et. al, 2015] A. M. Elkahky, Y. Song, X. He: A Multi-View Deep Learning Approach for Cross Domain User Modeling in
Recommendation Systems. 24th International Conference on World Wide Web (WWW’15). [Paterek, 2007] A. Paterek: Improving
regularized singular value decomposition for collaborative filtering. KDD Cup and Workshop 2007.

[Paterek, 2007] A. Paterek: Improving regularized singular value decomposition for collaborative filtering. KDD Cup 2007 Workshop.
[Pilaszy & Tikk, 2009] I. Pilaszy, D. Tikk: Recommending new movies: even a few ratings are more valuable than metadata. 3rd ACM
Conference on Recommender Systems (RecSys’09).

[Qu et. al, 2016] Y. Qu, H. Cai, K. Ren, W. Zhang, Y. Yu: Product-based Neural Networks for User Response Prediction. 16th International
Conference on Data Mining (ICDM 2016).

[Salakhutdinov et. al, 2007] R. Salakhutdinov, A. Mnih, G. Hinton: Restricted Boltzmann Machines for Collaborative Filtering. 24th
International Conference on Machine Learning (ICML 2007).

[Song et. al, 2016] Y. Song, A. M. Elkahky, X. He: Multi-Rate Deep Learning for Temporal Recommendation. 39th International ACM
SIGIR conference on Research and Development in Information Retrieval (SIGIR’16).

[Vincent et. al, 2008] P. Vincent, H. Larochelle, Y. Bengio, P. A. Manzagol: Extracting and Composing Robust Features with Denoising
Autoencoders. 25th international Conference on Machine Learning (ICML 2008).

[Wang et. al, 2015] H. Wang, N. Wang, DY. Yeung: Collaborative Deep Learning for Recommender Systems. 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’15).

[Wang et. al, 2016] H. Wang, X. Shi, DY. Yeung: Collaborative Recurrent Autoencoder: Recommend while Learning to Fill in the Blanks.
Advances in Neural Information Processing Systems (NIPS 2016).

[Wu et. al, 2016] Y. Wu, C. DuBois, A. X. Zheng, M. Ester: Collaborative Denoising Auto-encoders for Top-n Recommender Systems. 9th
ACM International Conference on Web Search and Data Mining (WSDM’16)

[Zheng et. al, 2016] Y. Zheng, C. Liu, B. Tang, H. Zhou: Neural Autoregressive Collaborative Filtering for Implicit Feedback. 1st Workshop
on Deep Learning for Recommender Systems (DLRS 2016).

Feature Extraction from Content

Content features in recommenders

e Hybrid CF+CBF systems
— Interaction data + metadata

 Model based hybrid solutions

— Initiliazing
* Obtain item representation based on metadata
e Use this representation as initial item features

— Regularizing
* Obtain metadata based representations
* The interaction based representation should be close to the metadata based
e Add regularizing term to loss of this difference

— Joining
* Obtain metadata based representations

* Have the item feature vector be a concatenation
— Fixed metadata based part
— Learned interaction based part

Feature extraction from content

* Deep learning is capable of direct feature extraction
— Work with content directly
— Instead (or beside) metadata
* Images
— E.g.: product pictures, video thumbnails/frames
— Extraction: convolutional networks
— Applications (e.g.):
* Fashion
* Video
e Text
— E.g.: product description, content of the product, reviews

— Extraction
* RNNs
* 1D convolution networks
* Weighted word embeddings
* Paragraph vectors
— Applications (e.g.):
* News
* Books
* Publications

* Music/audio
— Extraction: convolutional networks (or RNNs)

Convolutional Neural Networks (CNN)

e Speciality of images
— Huge amount of information
* 3 channels (RGB)
* Lots of pixels

 Number of weights required to fully connect a 320x240
image to 2048 hidden units:

— 3*320*240*%2048 = 471,859,200
— Locality

* Objects’ presence are independent of their location or
orientation

* Objects are spatially restricted

Convolutional Neural Networks (CNN)

* Image input
— 3D tensor
* Width
* Height
* Channels (R,G,B)
* Text/sequence inputs
— Matrix
— of one-hot encoded entities
* Inputs must be of same size
— Padding
e (Classic) Convolutional Nets
— Convolution layers
— Pooling layers
— Fully connected layers

Convolutional Neural Networks (CNN)

* Convolutional layer (2D)

— Filter
* Learnable weights, arranged in a small tensor (e.g. 3x3xD)
— The tensor’s depth equals to the depth of the input
* Recognizes certain patterns on the image
— Convolution with a filter
* Apply the filter on regions of the image

— Yap = F(ZijkWijsliva-1,jp-14)
» Filters are applied over all channels (depth of the input tensor)
» Activation function is usually some kind of ReLU
Start from the upper left corner
Move left by one and apply again
— Once reaching the end, go back and shift down by one
e Result: a 2D map of activations, high at places corresponding to the pattern recognized by the filter
— Convolution layer: multiple filters of the same size
* Inputsize (W; X W, X D)
* Filtersize (F X F X D)
e Stride (shift value) (S)
¢ Number of filters (N)

. Outputsize: (g + 1) x (% + 1) x N
¢ Number of weights: F X F X D X N
— Another way to look at it:
* Hidden neurons organized in a (? + 1) X (WZS_F + 1) X N tensor

* Weights a shared between neurons with the same depth
* Aneuron processe an F X F X D region of the input
* Neighboring neurons process regions shifted by the stride value

Convolutional Neural Networks (CNN)

* Pooling layer
— Mean pooling: replace an R X R region with the mean of the values
— Max pooling: replace an R X R region with the maximum of the values
— Used to quickly reduce the size

— Cheap, but very aggressive operator
* Avoid when possible
* Often needed, because convolutions don’t decrease the number of inputs fast enough

— Inputsize: W; X W, X N
Wy W,

— Output size: = X = X N
* Fully connected layers

— Final few layers

— Each hidden neuron is connected with every neuron in the next layer
* Residual connections (improvement) [He et. al, 2016]

— Very deep networks degrade performance

— Hard to find the proper mappings
— Reformulation of the problem: F(x) = F(x)+x

Convolutional Neural Networks (CNN)

e Some examples

* GoogleNet [Szegedy et. =]] o] [

en

Convolution

ooooooo
CCCCCC
@ Dropout
@» Fully connected
-

* ResNet (up to 200+ layers) [He et. al, 2016]

Images in recommenders

 [McAuley et. Al, 2015]

— Learns a parameterized distance metric over visual
features
* Visual features are extracted from a pretrained CNN

* Distance function: Eucledian distance of ,embedded” visual
features

— Embedding here: multiplication with a weight matrix to reduce
the number of dimensions

— Personalized distance
* Reweights the distance with a user specific weight vector
— Training: maximizing likelihood of an existing
relationship with the target item
e Over uniformly sampled negative items

Images in recommenders

e Visual BPR [He & McAuley, 2016]

— Model composed of

* Bias terms
e MF model

e Visual part
— Pretrained CNN features
— Dimension reduction through ,,embedding”

— The product of this visual item feature and a learned user feature vector is used in the
model

* Visual bias
— Product of the pretrained CNN features and a global bias vector over its features

— BPR loss
— Tested on clothing datasets (9-25% improvement)
b 4096 1 Fx1
ﬁ ltem

Arch. by Krizhevsky et al. Latent Factors Biases
i

ST . . D=1
Deep CNN -

_ ltem Visual Item User
Visual Features Factors Factors Factors

Music representations

e [Oord et. al, 2013]

— Extends iALS/WMF with audio
features
* To overcome cold-start

— Music feature extraction

* Time-frequency representation

* Applied CNN on 3 second
samples

* Latent factor of the clip: average
predictions on consecutive
windows of the clip

— Integration with MF
global

* (@) Minimize distance between gHL- sompors
music features and the MF’s pooling
feature vectors

* (b) Replace the item features
with the music features
(minimize original loss)

2048 2048
1536

2X o5g

2% 512
l MP mean

—— =1

— l 40

ma]

35 L2

73

Textual information improving

recommendations

 [Bansal et. al, 2016]
— Paper recommendation

— Item representation
* Text representation

— Two layer GRU (RNN): bidirectional layer followed by a unidirectional layer
— Representation is created by pooling over the hidden states of the sequence
* |D based representation (item feature vector)

* Final representation: ID + text added
— Multi-task learning
* Predict both user scores
* And likelihood of tags
— End-to-end training
* All parameters are trained simultaneously (no pretraining)
* Loss

— User scores: weighted MSE (like in iALS)
— Tags: weighted log likelihood (unobserved tags are downweighted)

[' Pooling Layer j—*:’;f-’(-u] B — =097
'1~ f $ $ $ t f f 1 4 usar: Yoshua
AN AN AN . i
h’\'—b' .’:2 e ! 3/.—-4 .F:J‘ Il h- |ad! hf\'—rl h Qa hj |—-fi-],} | r=0.02
T T' T T T t t T T user: David
£ T o Fa P e 7 T f{]{ -1-\].
hl Jex(hg - h; - h; b h- -+[h['”ﬂl h .h,,, - hr]ﬁ-h-fi']m W 42, . _
tag: RN
- c)—r =011

tag: LOA
This papear T about deep learning « Pgper 42

References

[Bansal et. al, 2016] T. Bansal, D. Belanger, A. McCallum: Ask the GRU: Multi-Task
Learning for Deep Text Recommendations. 10th ACM Conference on
Recommender Systems (RecSys’16).

[He et. al, 2016] K. He, X. Zhang, S. Ren, J. Sun: Deep Residual Learning for Image
Recognition. CVPR 2016.

[He & McAuley, 2016] R. He, J. McAuley: VBPR: Visual Bayesian Personalized
Ranking from Implicit Feedback. 30th AAAI Conference on Artificial Intelligence
(AAAI 16).

[McAuley et. Al, 2015] J. McAuley, C. Targett, Q. Shi, A. Hengel: Image-based
Recommendations on Styles and Substitutes. 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR’15).
[Oord et. al, 2013] A. Oord, S. Dieleman, B. Schrauwen: Deep Content-based Music
Recommendation. Advances in Neural Information Processing Systems (NIPS
2013).

[Szegedy et. al, 2015] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Angueloy,
D. Erhan, V. Vanhoucke, A. Rabinovich: Going Deeper with Convolutions. CVPR
2015.

[Szegedy et. al, 2016] C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, Z. Wojna:
Rethinking the Inception Architecture for Computer Vision. CVPR 2016.

Session-based Recommendations with

NS

Recurrent Neural Networks

e Input: sequential information ({x;}/_1)
* Hidden state (h;):

— representation of the sequence so far

— influenced by every element of the sequence up
tot

¢ h’t =f(WXt + Uh’t—l +b)

RNN-based machine learning

* Sequence to value
— Encoding, labeling
— E.g.: time series classification

* Value to sequence
— Decoding, generation
— E.g.: sequence generation

* Sequence to sequence

— Simultaneous
* E.g.: next-click prediction
— Encoder-decoder architecture

* E.g.: machine translation

* Two RNNs (encoder & decoder)
— Encoder produces a vector describing the sequence J J J
» Last hidden state
» Combination of hidden states (e.g. mean pooling)
» Learned combination of hidden states 0
— Decoder receives the summary and generates a new sequence
» The generated symbol is usually fed back to the decoder

» The summary vector can be used to initialize the decoder
» Or can be given as a global context
* Attention mechanism (optionally)

V1 Y2 Y3

V1 Y2 Y3

X1 X2 X3

V1 Y2 Y3

Exploding/Vanishing gradients

¢ ht — f(Wxt + Uht—l + b)
* Gradient of hy wrt. x4

— Simplification: linear activations
* In reality: bounded
_dhy _ Ohy Bhpy OMpdhy _ -1y,
axl aht_]_ aht_z ahl axl
* [|U|l, < 1 - vanishing gradients

— The effect of values further in the past is neglected
— The network forgets

* [|U|l, > 1 - exploding gradients
— Gradients become very large on longer sequences
— The network becomes unstable

Handling exploding gradients

e Gradient clipping

— If the gradient is larger than a threshold, scale it back to
the threshold

— Updates are not accurate

— Vanishing gradients are not solved
* Enforce ||U||, =1

— Unitary RNN

— Unable to forget
* Gated networks

— Long-Short Term Memory (LSTM)

— Gated Recurrent Unit (GRU)

— (and a some other variants)

Long-Short Term Memory (LSTM)

[Hochreiter & Schmidhuber, 1999]

Instead of rewriting the hidden state during update,
add a delta

— St = S¢.1 + Asy

— Keeps the contribution of earlier inputs relevant
Information flow is controlled by gates

— Gates depend on input and the hidden state

— BetweenOand1

— Forget gate (f): 0/1 = reset/keep hidden state

— Input gate (i): 0/1 = don’t/do consider the contribution of
the input

— Output gate (0): how much of the memory is written to the
hidden state
Hidden state is separated into two (read before you
write)
— Memory cell (c): internal state of the LSTM cell

— Hidden state (h): influences gates, updated from the
memory cell

ft = O—(fot + Ufh't—l + bf)
it - O-(Wlxt + Uiht—l + bl)
Ot == O-(Woxt + UOht—l + bO)

Et == tanh(Wxt + Uht—l + b)

Ct=ftoCq tiroC;
h: = o; o tanh(c;)

e Canl
C)lw
R

N

Gated Recurrent Unit (GRU)

* [Cho et. al, 2014] ze = o(Wyx¢ + Uzhe_1 + by)
= o(W.x; + U.h,_, + b,
* Simplified information flow e = oW -)

— Single hidden state h, = tanh(Wx; + 15 0 Uh,_, + b)
— Input and forget gate merged - hy =zrohi_1 + (1 —2)0hy
update gate (z)

— No output gate

— Reset gate (r) to break
information flow from previous

hidden state X
* Similar performance to LSTM 4@> :) P ERTY

> OUT

Session-based recommendations

* Sequence of events
— User identification problem
— Disjoint sessions (instead of consistent user history)

e Tasks
— Next click prediction
— Predicting intent
* Classic algorithms can’t cope with it well

— |ltem-to-item recommendations as approximation in
live systems

* Area revitalized by RNNs

GRU4Rec (1/3)

[Hidasi et. al, 2015]

Network structure

— Input: one hot encoded item ID

— Optional embedding layer

— GRU layer(s)

— Output: scores over all items

— Target: the next item in the session

Adapting GRU to session-based
recommendations

— Sessions of (very) different length & lots of short
sessions: session-parallel mini-batching

— Lots of items (inputs, outputs): sampling on the
output

— The goal is ranking: listwise loss functions on
pointwise/pairwise scores

-

~

ltemID (next)

[]
One-hot vector
N "/

i

/ Scores on items \

\ One-hot vector
£

GRU layer I

[ltemID]

GRU4Rec (2/3)

Session-parallel mini-batches
— Mini-batch is defined over sessions
— Update with one step BPTT

* Lots of sessions are very short Session3

* 2D mini-batching, updating on longer
sequences (with or without padding) didn’t
improve accuracy Session5

Sessionl

Session2

Session4

e Output sampling
— Computing scores for all items (100K — 1M) in

every step is slow l
— One posit.ive item (target)'+.severalsamples ot 50 57 5 A3 PRERG oy . alla
— Fast solution: scores on.rr'nnl-batch targgts o 52 ﬁ 3 ‘_,H 3 . e
* Items of the other mini-batch are negative 3 3 e DT BN
samples for the current mini-batch Y2l V3| Vi Vel 97 95| = e t Lo
XE = —1 e
* Loss functions = —log(sy), s; Zjstl yj
— Cross-entropy + softmax Ng ~ ~
— Average of BPR scores o Zj=1 log (O-(yi _ yj))
— TOP1 score (average of ranking error + BPR = N

regularization over score values) N R N N N A2
Zj=51 O-(yj - Yi) + ij1 O-(yj)

TOP1 =
Ng

GRU4Rec (3/3)

e Observations
— Similar accuracy with/without embedding

— Multiple layers rarely help
* Sometimes slight improvement with 2 layers
* Sessions span over short time, no need for multiple time scales

— Quick conversion: only small changes after 5-10 epochs

— Upper bound for model capacity

* No improvement when adding additional units after a certain
threshold

* This threshold can be lowered with some techniques
e Results
— 20-30% improvement over item-to-item recommendations

Improving GRU4Rec

Recall@20 on RSC15 by GRU4Rec: 0.6069 (100 units), 0.6322 (1000 units)
Data augmentation [Tan et. al, 2016]

Generate additional sessions by taking every possible sequence starting from the end of a session
Randomly remove items from these sequences

Long training times

Recall@20 on RSC15 (using the full training set for training): ~0.685 (100 units)

Bayesian version (RelLeVar) [Chatzis et. al, 2017]

Bayesian formulation of the model
Basically additional regularization by adding random noise during sampling

Recall@20 on RSC15: 0.6507 (1500 units)

New losses and additional sampling [Hidasi & Karatzoglou, 2017]

Use additional samples beside minibatch samples 035
Design better loss functions 0.30
— Ng Ns _2
* BPRax = —log (Zi=1 sja(ri - r])) +AX2, 7 0.25
0.030 0.025 0.014 _
0.025 A 0.020 0012 g 0.20
o 0010 o
0020 Seatt £ 0.015 z
é 0.015 ,.--"':,':g‘.‘- 8 % o008 + BPR, 1st epoch 0.15 Loss
§ gome b o A
o.010 .. ,'::'. 0.004 § « BPR-max, 10th epoch 0.10 ® XE
005 *oe 0.005 i) ® TOP1-max
005 o e 0.002
- i ® BPR-max
DODO:‘ 5 10 15 20 25 30 35 U.UUUO 500 1000 1500 2000 (][][](JD 50 100 150 200 0.05
Rank Rank Rank 0 32 128 512 2048 8192 32768 ALL

Recall@20 on RSC15: 0.7119 (100 units) Additional samples

Extensions

Multi-modal information (p-RNN model) [Hidasi et. al, 2016]
— Use image and description besides the item ID
— One RNN per information source
— Hidden states concatenated
— Alternating training

ltem metadata [Twardowski, 2016]
— Embed item metadata
— Merge with the hidden layer of the RNN (session representation)
— Predict compatibility using feedforward layers

Contextualization [Smirnova & Vasile, 2017]
— Merging both current and next context
— Current context on the input module
— Next context on the output module
— The RNN cell is redefined to learn context-aware transitions

Personalizing by inter-session modeling

— Hierarchical RNNs [Quadrana et. al, 2017], [Ruocco et. al, 2017]
* One RNN works within the session (next click prediction)
* The other RNN predicts the transition between the sessions of the user

References

[Chatzis et. al, 2017] S. P. Chatzis, P. Christodoulou, A. Andreou: Recurrent Latent Variable Networks for Session-Based
Recommendation. 2nd Workshop on Deep Learning for Recommender Systems (DLRS 2017).
https://arxiv.org/abs/1706.04026

[Cho et. al, 2014] K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio. On the properties of neural machine translation:
Encoder-decoder approaches. https://arxiv.org/abs/1409.1259

[Hidasi et. al, 2015] B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk: Session-based Recommendations with Recurrent Neural
Networks. International Conference on Learning Representations (ICLR 2016). https://arxiv.org/abs/1511.06939

[Hidasi et. al, 2016] B. Hidasi, M. Quadrana, A. Karatzoglou, D. Tikk: Parallel Recurrent Neural Network Architectures for
Feature-rich Session-based Recommendations. 10th ACM Conference on Recommender Systems (RecSys’16).

[Hidasi & Karatzoglou, 2017] B. Hidasi, Alexandros Karatzoglou: Recurrent Neural Networks with Top-k Gains for Session-
based Recommendations. https://arxiv.org/abs/1706.03847

[Hochreiter & Schmidhuber, 1997] S. Hochreiter, J. Schmidhuber: Long Short-term Memory. Neural Computation, 9(8):1735-
1780.

[Quadrana et. al, 2017]:M. Quadrana, A. Karatzoglou, B. Hidasi, P. Cremonesi: Personalizing Session-based
Recommendations with Hierarchical Recurrent Neural Networks. 11th ACM Conference on Recommender Systems
(RecSys’17). https://arxiv.org/abs/1706.04148

[Ruocco et. al, 2017]: M. Ruocco, O. S. Lillestgl Skrede, H. Langseth: Inter-Session Modeling for Session-Based
Recommendation. 2nd Workshop on Deep Learning for Recommendations (DLRS 2017). https://arxiv.org/abs/1706.07506
[Smirnova & Vasile, 2017] E. Smirnova, F. Vasile: Contextual Sequence Modeling for Recommendation with Recurrent Neural
Networks. 2nd Workshop on Deep Learning for Recommender Systems (DLRS 2017). https://arxiv.org/abs/1706.07684

[Tan et. al, 2016] Y. K. Tan, X. Xu, Y. Liu: Improved Recurrent Neural Networks for Session-based Recommendations. 1st
Workshop on Deep Learning for Recommendations (DLRS 2016). https://arxiv.org/abs/1606.08117

[Twardowski, 2016] B. Twardowski: Modelling Contextual Information in Session-Aware Recommender Systems with Neural
Networks. 10th ACM Conference on Recommender Systems (RecSys’16).

Conclusions

* Deep Learning is now in RecSys

 Huge potential, but lot to do
— E.g. Explore more advanced DL techniques

* Current research directions
— ltem embeddings
— Deep collaborative filtering
— Feature extraction from content
— Session-based recommendations with RNNs

* Scalability should be kept in mind

* Don’t fall for the hype BUT don’t disregard the
achievements of DL and its potential for RecSys

Thank you!

	Slide 1: Deep Learning for Recommender Systems
	Slide 2: Why Deep Learning?
	Slide 3: Why Deep Learning?
	Slide 4: Complex Architectures
	Slide 5: Neural Networks are Universal Function Approximators
	Slide 6: Inspiration for Neural Learning
	Slide 7: Neural Model
	Slide 8: Neuron a.k.a. Unit
	Slide 9: Feedforward Multilayered Network
	Slide 10: Learning
	Slide 11: Stochastic Gradient Descent
	Slide 12: Stochastic Gradient Descent
	Slide 13: Backpropagation
	Slide 14: Backpropagation
	Slide 15: Modern Deep Networks
	Slide 16: Modern Deep Networks
	Slide 17: Modern Deep Networks
	Slide 18: Modern Deep Networks
	Slide 19: Modern Deep Networks
	Slide 20: Modern Deep Networks
	Slide 21: Modern Feedforward Networks
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Item embeddings & 2vec models
	Slide 26: Embeddings
	Slide 27: Matrix factorization as learning embeddings
	Slide 28: Word2Vec
	Slide 29: Word2Vec - CBOW
	Slide 30: Word2Vec – Skip-gram
	Slide 31: Geometry of the Embedding Space
	Slide 32: Paragraph2vec, doc2vec
	Slide 33: ...2vec for Recommendations
	Slide 35: Prod2Vec
	Slide 36: Bagged Prod2Vec
	Slide 37: User-Prod2Vec
	Slide 38: Utilizing more information
	Slide 39: References
	Slide 40: Deep Collaborative Filtering
	Slide 41: CF with Neural Networks
	Slide 42: Restricted Boltzmann Machines (RBM) for recommendation
	Slide 43: Deep Boltzmann Machines (DBM)
	Slide 44: Autoencoders
	Slide 45: Autoencoders for recommendation
	Slide 46: Autoencoders for recommendation
	Slide 47: Recurrent autoencoder
	Slide 48: DeepCF methods
	Slide 49: DeepCF methods
	Slide 50: DeepCF methods
	Slide 51: DeepCF methods
	Slide 52: Applications: app recommendations
	Slide 53: Applications: video recommendations
	Slide 54: References
	Slide 55: Feature Extraction from Content
	Slide 56: Content features in recommenders
	Slide 57: Feature extraction from content
	Slide 58: Convolutional Neural Networks (CNN)
	Slide 59: Convolutional Neural Networks (CNN)
	Slide 60: Convolutional Neural Networks (CNN)
	Slide 61: Convolutional Neural Networks (CNN)
	Slide 62: Convolutional Neural Networks (CNN)
	Slide 63: Images in recommenders
	Slide 64: Images in recommenders
	Slide 65: Music representations
	Slide 66: Textual information improving recommendations
	Slide 67: References
	Slide 68: Session-based Recommendations with RNNs
	Slide 69: Recurrent Neural Networks
	Slide 70: RNN-based machine learning
	Slide 71: Exploding/Vanishing gradients
	Slide 72: Handling exploding gradients
	Slide 73: Long-Short Term Memory (LSTM)
	Slide 74: Gated Recurrent Unit (GRU)
	Slide 75: Session-based recommendations
	Slide 76: GRU4Rec (1/3)
	Slide 77: GRU4Rec (2/3)
	Slide 78: GRU4Rec (3/3)
	Slide 79: Improving GRU4Rec
	Slide 80: Extensions
	Slide 81: References
	Slide 82: Conclusions
	Slide 83: Thank you!

