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Abstract. Implicit feedback based recommendation problems, typically set in real-
world applications, recently have been receiving more attention in the research com-
munity. From the practical point of view, scalability of such methods is crucial. How-
ever, factorization based algorithms efficient in explicit rating data applied directly to
implicit data are computationally inefficient, therefore different techniques are needed
to adapt to implicit feedback. For alternating least squares (ALS) learning, several
research contributions have proposed efficient adaptation techniques for implicit feed-
back. These algorithms scale linearly with the number of non-zero data points, but
cubically in the number of features, which is a computational bottleneck that prevents
the efficient usage of accurate high factor models. Also, map-reduce type big data tech-
niques are not viable with ALS-learning, because there is no known technique that
solves the high communication overhead required for random access of the feature ma-
trices. To overcome this drawback here we present two generic approximate variants for
fast ALS-learning, using conjugate gradient (CG) and coordinate descent (CD). Both
CG and CD can be coupled with all methods using ALS-learning. We demonstrate the
advantages of fast ALS variants on iTALS, a generic context-aware algorithm, which
applies ALS-learning for tensor factorization on implicit data. In the experiments, we
compare the approximate techniques with the base ALS-learning in terms of train-
ing time, scalability, recommendation accuracy and convergence. We show that the
proposed solutions offer a trade-off between recommendation accuracy and speed of
training time; this makes it possible to apply ALS-based methods efficiently even for
billions of data points.

Keywords: recommender systems, tensor factorization, context awareness, implicit
feedback, scalability, comparison
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1. Introduction

In this paper we investigate a class of practically important latent factor based
collaborative filtering recommendation algorithms that use alternating least squares
(ALS) based learning, and propose speed-up techniques that enable trade-off be-
tween recommendation accuracy and training time. Now, we first characterize
this practically important recommendation problem class in terms of input data,
scalability, and context-awareness.

Recommender systems (Ricci et al. 2011) are information filtering tools that
help users suffering information overload to find interesting items (products, con-
tent, etc.). Here we focus on the class of latent factor based collaborative filtering
(CF) methods that gained popularity due to their good accuracy and scalability
(Koren & Bell 2011). They capture the users’ preferences by uncovering latent
features that explain the observed user–item ratings using factor models.

In most practical scenarios, however, users do not rate content/items explic-
itly: one can only observe the users’ interactions1 with items—retrieved from
web logs, for instance—as they use the system. This type of feedback is termed
implicit feedback, also called one-class CF in the literature, and contains unary
data, i.e. logged user–item interactions. Implicit feedback data contains less in-
formation on user preferences than explicit feedback, and it exhibits the problem
of no negative feedback and inherent noisiness (Hu et al. 2008).

Context-aware recommendation systems (CARS) refine recommendations by
considering additional information, available to the system. They extend the
dualistic user–item modeling concept and consider additional information that
may influence the user preferences at recommendation. Such data are together
termed contextual information, or briefly context (Adomavicius & Tuzhilin 2008).
One class of CARS uses latent factor methods (see e.g. Karatzoglou et al. (2010),
Rendle & Schmidt-Thieme (2010), Hidasi & Tikk (2012), Shi et al. (2012), Rendle
(2012)). For demonstrating our proposed methods, in this paper we will use
iTALS (Hidasi & Tikk 2012) that is a generic context-aware algorithm, which
applies ALS-learning for tensor factorization on implicit data.

For practical applicability, beyond the implicit feedback and context-awareness,
the training time of the algorithms is key aspect. Faster training allows to (1)
capture a more recent state of the system modeled (advantageous for any system,
but required for ones where the lifetime of the items is short or new items appear
constantly); (2) retrain the models more frequently; (3) apply trade-off between
running times and accuracy by using more features or running more epochs.

A straightforward way of speeding up training – without any modification
on the base algorithm – is to distribute computations between multiple pro-
cessing units (e.g. processor cores, machines). A considerable advantage of most
ALS based methods is that the majority of computations are independent and
therefore can be done simultaneously. With iTALS, the feature vectors of a di-
mension are computed independently (see Section 3), therefore the degree of
parallelization can be as high as the number of entities (users, items, context-
states). Since the computation for one entity is fast, the method scales well.
However, ALS-based methods (including iTALS) require that at least the model
(feature matrices) are stored in memory and each processing unit has access to

1 User purchased an item or viewed an product page, etc. Interactions also called events or
transactions.
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this shared memory.2 Otherwise a huge communication overhead arises, since
the computations require random access to the feature matrices. This also im-
plies that ALS does not work well with standard map-reduce based big data
technologies (Balassi et al. 2014), but requires a different solution (e.g.: multi-
core/multiprocessor machine, GPGPU, multi-GPU systems, cluster with shared
memory, etc.).

We argue that models and data fit in memory in most cases. With the index-
ing overhead required by iTALS, ∼ 45 M 3-tuple records can be stored in 1 GB.
The models take even less space: low and high factor models (K = 40) would
require 21.36 MB and 106.81 MB,3 respectively. Today’s normal PCs therefore
can handle around 1 billion record, their high end counterparts can deal with
several billions and shared memory clusters are capable of working with tens or
even hundreds of billion events. Thus this approach is feasible for most of the
recommendation tasks.

On the other hand, there is room for improvement beyond distributing the
computations. Distributed computation does not decrease the total load on the
infrastructure and the training might still take long due to some computation-
ally expensive steps in the algorithm. Usually the CPU is the bottleneck for such
algorithms, in contrast to the classic big data problem. ALS slows down signif-
icantly if the number of features (K) is high (see Section 3.1). This prevents
the efficient usage of high factor models. High factor models are generally more
accurate than low factor ones therefore it would be beneficial to use them.

In this paper, we propose two approximate methods that significantly speed
up ALS-learning, especially if the number of features is high, that is, the gain in
speed increases as the number of features increases.

The proposed methods allow for a trade-off between speed and recommen-
dation accuracy. One can either train a model with the same accuracy in signif-
icantly less time, train a model with more features (and thus be more accurate)
with the same training time, or anything in-between. Our solution does not
address the incompatibility between ALS and map-reduce based big data tech-
nology, we instead offer feasible trade-off solutions using approximate methods
to reduce the computational complexity of ALS-learning.

Our main contributions are: (1) the two approximate variants for ALS-learning
using coordinate descent and conjugate gradient methods; (2) we show that these
enable faster training and improved scalability for iTALS and every other ALS-
based factorization methods; (3) in our experiments we point out that the pro-
posed approximate methods offer trade-off between recommendation accuracy
and training time.

The paper is organized as follows. Section 2 briefly reviews related work in
the field of recommendation systems on context-awareness, tensor factorization,
and implicit feedback algorithms. In Section 3 we review the iTALS algorithm,
including its application (3.2) of the implicit feedback based context-aware rec-
ommendation problem and analyze its complexity (3.1). We introduce the two
approximate methods for ALS and extend them to be usable with iTALS and
other ALS-methods using complex models in Section 4. Section 5 explains our

2 It is beneficial if the data is stored in the shared memory as well, but it can be stored on
disk as well, if properly indexed.
3 Here we assumed a relatively high density of ∼ 1%, 100K for users and 45K for items that
is realistic for ∼ 45 M record.
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experimental setup and describes the context dimensions we used in our exper-
iments. The analysis and comparison of our methods is presented in Section 6.
The work is concluded in Section 7.

We will use the following notation in the rest of this paper:

A ◦B ◦ . . . The Hadamard (elementwise) product of A, B, . . . . The
operands are of equal size, and the result’s size is also the
same. The element of the result at index (i, j, k, . . .) is the
product of the element of A, B, . . . at index (i, j, k, . . .).

Ai The ith column of matrix A.
Ai1,i2,... The (i1, i2, . . .) element of tensor/matrix A.
K The number of features, the main parameter of the factoriza-

tion.
D The number of dimensions of the tensor.
T A D dimensional tensor that contains only zeroes and ones

(preference tensor).
W A tensor with the same size as T (weight tensor).
Si The size of T in the ith dimension (i = 1, . . . , D).
N+ The number of ratings (explicit case); non-zero elements in

tensor T (implicit case).

M(i) A K×Si sized matrix. Its columns are the feature vectors for
the entities in the ith dimension.

Aj1,...,ji−1,j,ji+1,...,jD denotes an element of tensor A where the index in the ith

dimension is fixed to j, and other indices are arbitrary.
NI Number of inner iterations.

2. Related work

Context-aware recommender systems (Adomavicius et al. 2005) have emerged as
an important research area in the last five years and entire workshops are de-
voted to this topic on major conferences: CARS series started in 2009, (Adomavi-
cius & Ricci 2009); CAMRA in 2010, (Said et al. 2010). The application fields
of context-aware recommenders include among others: point-of-interest (Bader
et al. 2011), video (Zarka et al. 2012), music (Dias & Fonseca 2013) and news rec-
ommendation (Lommatzsch 2014). Context-aware recommender approaches can
be classified into three main groups: pre-filtering, post-filtering and contextual
modeling (Adomavicius & Tuzhilin 2008). Pre-filtering methods partition data
by the value of the context variables and use traditional models on these seg-
ments. Post-filtering ignores the contextual data at recommendation generation,
but filters out irrelevant items (in a given context) or adjust recommendation
score (according to the context) when the recommendation list is prepared. Con-
textual modeling approaches directly incorporate the context into the model and
learn the relation between users, items and context-states. Tensor factorization
based solutions, including our approach, falls into the contextual modeling cat-
egory.

Tensor factorization (TF) incorporates contextual information into the rec-
ommendation model. Let us have a set of items, users and ratings (or events) and
assume that additional context of the ratings is available (e.g. time of the rating).
Having C different contexts, the rating data can be cast into a D = C+2 dimen-
sional tensor, T . The first dimension corresponds to users, the second to items
and the subsequent C dimensions [3, . . . , D] are devoted to contexts. TF meth-
ods approximate this tensor via lower rank approximation w.r.t. a loss function
(usually some kind of RMSE – root mean squared error – variant). In (Karat-
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zoglou et al. 2010), a sparse HOSVD (Lathauwer et al. 2000) method is presented
for the explicit context aware case, which decomposes a D dimensional sparse
tensor into D (low rank) matrices and a D dimensional (low rank) tensor. If
the size of the original tensor is S1 × S2 × · · · × SD and the number of features
is K then the size of the matrices are S1 × K, S2 × K, . . . , SD × K and the
size of the tensor is K × · · · ×K. The authors use gradient descent to learn the
model. The complexity of one training iteration scales linearly with the number
of ratings (N+) and cubically with the number of features (K), which is a large
improvement compared to the dense HOSVD’s O(K ·(S1+· · ·+SD)D). A further
improvement was proposed by (Rendle et al. 2011): their factorization machine
(FM) scales linearly both N+ and K. However, if the original tensor is large and
dense like for the implicit recommendation task then neither method scales well,
because N+ = S1 · · ·SD.

The two main approaches for ranking in the implicit w.r.t. loss functions are
pointwise and pairwise ranking. However, the naive minimization of the objec-
tive function in the implicit case is typically expensive, as it scales with the size
of the user–item matrix. There are two dominant approaches to overcome this
difficulty: (1) the trade-off solution that sacrifices the accuracy to some extent
for computational efficiency by sampling the data (usually the missing ”nega-
tive“ feedback is sampled); (2) the direct minimization of the objective function
without sampling by decomposing the calculation to independent parts.

For pointwise ranking and direct minimization, the seminal work was pro-
posed by (Hu et al. 2008); their implicit ALS (iALS) applies an alternating least
squares optimization and decomposes the derivatives of the objective function
to user-dependent and item-independent parts, hence the complexity of a train-
ing iteration is reduced to scale linearly with the number of events (positive
feedbacks, N+). (Pan et al. 2008) proposed two prediction based frameworks
for handling implicit feedback. The first one is similar to iALS, but it contains a
naive ALS optimizer instead of a tuned one. The second one is based on negative
example sampling.

For pairwise ranking, (Jahrer & Töscher 2011) applied a stochastic gradient
descent (SGD) optimizer on a sampled approximation of the objective function,
while (Takács & Tikk 2012) proposed a direct minimization for the same ob-
jective function with an appropriate decomposition of the derivatives. Another
ranking based approach for implicit feedback is the Bayesian personalized rank-
ing (BPR; Rendle et al. (2009)), where objective function of BPR is derived
from the Bayesian analysis of the problem. The optimization technique used for
training is SGD.

Only a few factorization algorithms can handle both implicit feedback and
context. Both iTALS (Hidasi & Tikk 2012) and its variant iTALSx (Hidasi 2014)
use pointwise ranking and direct minimization with ALS-learning. TFMAP (Shi
et al. 2012) aims to maximize mean average precision (MAP) through pairwise
ranking and sampling. It is suggested by (Rendle 2012) that Factorization Ma-
chines (Rendle et al. 2011) can be used for the implicit case with BPR as the
objective function, however it is not elaborated and sampling for BPR is not
trivial when D > 2. A very recent method (Nguyen et al. 2014) uses Gaussian
processes and can be applied for both explicit and implicit cases.

Our proposed speed-up techniques are applicable to all methods that use
ALS-learning, and they also provide trade-off between accuracy and training
time.
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Fig. 1. Concept of the tensor decomposition in 3 dimension with the classical
user–item–context setting.

3. Review of iTALS

In this section we review iTALS, a general ALS-based tensor factorization al-
gorithm that scales linearly with the non-zero element of a dense tensor (when
appropriate weighting is used) and cubically with the number of features. This
property makes the algorithm suitable to handle the context-aware implicit rec-
ommendation problem.4 iTALS uses pointwise ranking through weighted RMSE
(wRMSE) based loss function and directly minimizes said loss function. Learn-
ing efficiency is guaranteed by the careful decomposition of the gradient into
independent computations.

Let T be a tensor of zeroes and ones and let W contain weights for each
element of T . Let Tu,i,c3,··· ,cD = 1 if user u has (at least one) event on item
i while the context-state of jth context dimension was cj . Due to its construc-
tion, most elements of T are zeros. The weight matrix W takes element w0

if the corresponding element in T is 0, and is set to be (much) greater than
w0 otherwise. Instead of using the form of the common HOSVD decomposition
(D matrices and a D dimensional tensor) our proposed model (see eq. (1)) ap-
proximates T by a decomposition into D matrices. The size of the matrices are
K×S1,K×S2, . . . ,K×SD. (See figure 1.) The approximation of a given element
of T is the elementwise product of columns from M (i) low rank matrices:

T̂i1,i2,...,iD = 1T
(
M

(1)
i1
◦M (2)

i2
◦ · · · ◦M (D)

iD

)
(1)

We want to minimize the following loss function (wRMSE):

L(M (1), . . . ,M (D)) =

S1,...,SD∑
i1=1,...,iD=1

Wi1,...,iD

(
Ti1,...,iD − T̂i1,...,iD

)2
. (2)

4 With proper weighting scheme, the iTALS could be used with explicit feedback as well.
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The loss function L is minimized by alternating least squares (ALS), that is,
all but one of the M (i) matrices are fixed (without the loss of generality, next
step are shown for M (1)). L is convex in the non-fixed variables. L reaches its
minimum in M (1), where its derivative with respect to M (1) is zero. Since the
derivative of L is linear in M (1), the columns of the matrix can be computed
separately. That is for the (i1)th column of M (1):

0 =
∂L

∂M
(1)
i1

= −2

S2,...,SD∑
i2=1,...,iD=1

Wi1,i2,...,iDTi1,...,iD

(
M

(2)
i2
◦ · · · ◦M (D)

iD

)
︸ ︷︷ ︸

O

+

2

S2,...,SD∑
i2=1,...,iD=1

Wi1,i2,...,iD

(
M

(2)
i2
◦ · · · ◦M (D)

iD

)(
M

(2)
i2
◦ · · · ◦M (D)

iD

)T
︸ ︷︷ ︸

I

M
(1)
i1

(3)

While O can be computed efficiently, calculation of I is expensive, because it
requires summing over all possible configurations in which the current entity—
whose feature vector is being computed; the first entity of the first dimension in
this case—takes part. For all columns of a feature matrix, this would result in a
complexity that is the product of the number of columns of all feature matrices.
Therefore we transform I by using Wi1,i2,...,iD = W ′i1,i2,...,iD + w0 and get:

I =

S2,...,SD∑
i2=1,...,iD=1

W ′i1,i2,...,iD

(
M

(2)
i2
◦ · · · ◦M (D)

iD

)(
M

(2)
i2
◦ · · · ◦M (D)

iD

)T
+

+w0

S2,...SD∑
i2=1,...,iD=1

(
M

(2)
i2
◦ · · · ◦M (D)

iD

)(
M

(2)
i2
◦ · · · ◦M (D)

iD

)T
︸ ︷︷ ︸

J

(4)

The transformation enables more efficient computations. First, because the first
sum in equation (4) is tractable, as W ′i1,i2,...,iD is zero for those indices where
Ti1,i2,...,iD is zero, thus it scales with the number of transactions the actual entity
is involved with. A similar decomposition step is applied in iALS (Hu et al.
2008). Second, J is the same for all columns of M (1), thus can be precomputed
efficiently as follows. (See the formal complexity analysis in Section 3.1.)

J = w0

S2,...,SD∑
i2=1,...,iD=1

(
M

(2)
i2
◦ · · · ◦M (D)

iD

)(
M

(2)
i2
◦ · · · ◦M (D)

iD

)T
=

= w0

(
S2∑
i2=1

M
(2)
i2

(
M

(2)
i2

)T)
︸ ︷︷ ︸

M(2)

◦ · · · ◦

(
SD∑
iD=1

M
(D)
iD

(
M

(D)
iD

)T)
︸ ︷︷ ︸

M(D)

(5)



8 B. Hidasi & D. Tikk

where we used that each element of J is computed as:

Jj,k =w0

 S2,...,SD∑
i2=1,...,iD=1

(
M

(2)
i2
◦ · · · ◦M (D)

iD

)(
M

(2)
i2
◦ · · · ◦M (D)

iD

)T
j,k

=

=w0

S2,...,SD∑
i2=1,...,iD=1

(
M

(2)
j,i2
· . . . ·M (D)

j,iD

)(
M

(2)
k,i2
· . . . ·M (D)

k,iD

)
=

=w0

(
S2∑
i2=1

M
(2)
j,i2
M

(2)
k,i2

)
· . . . ·

(
SD∑
iD=1

M
(D)
j,iD

M
(D)
k,iD

)
(6)

Algorithm 3.1 Fast ALS-based tensor factorization for implicit feedback

Input: T : a D dimensional S1 × · · · × SD sized tensor of zeroes and ones; W : a
D dimensional S1 × · · · × SD sized tensor containing the weights; K: number of
features; E: number of epochs; λ: regularization coefficient
Output: {M (i)}i=1,...,D K × Si sized low rank matrices
procedure iTALS(T , W , K, E, λ)

1: for i = 1, . . . , D do
2: M (i) ← Random K × Si sized matrix
3: M(i) ←M (i)(M (i))T

4: end for
5: for e = 1, . . . , E do
6: for i = 1, . . . , D do
7: C(i) ← w0M(1) ◦ · · · ◦M(i−1) ◦M(i+1) · · · ◦M(D)

8: O(i) ← 0
9: for j = 1, . . . , Si do

10: C(i,j) ← C(i)

11: O(i,j) ← O(i)

12: for all {t | t = Tj1,...,ji−1,j,ji+1,...,jD , t 6= 0} do
13: Wt ←Wj1,...,ji−1,j,ji+1,...,jD − w0

14: v ←M
(1)
j1
◦ · · · ◦M (i−1)

j1−1
◦M (i+1)

ji+1
◦ · · · ◦M (D)

jD

15: C(i,j) ← C(i,j) +Wtvv
T

16: O(i,j) ← O(i,j) +Wtv
17: end for
18: M

(i)
j ← (C(i,j) + λI)−1O(i,j)

19: end for
20: M(i) ←M (i)(M (i))T

21: end for
22: end for
23: return {M (i)}i=1,...,D

end procedure

The pseudocode of the proposed iTALS (Tensor factorization using ALS for
implicit recommendation problem) is given in Algorithm 3.1. The pseudocode
follows the deduction above. In line 3 we precomputeM(i) introduced in eq. (5).
We create the column independent part of eq. (4) in line 7. We add the column
dependent parts of eq. (3) in lines 12–17 and compute the desired column (with
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regularization) in line 18. In this step we use regularization to avoid numerical
instability and overfitting of the model. After each column of M (i) is computed,
M(i) is recomputed in line 20.

Please note that a few features such as biases and regularization were omit-
ted for clearer presentation. These features can be easily incorporated into the
algorithm and their inclusion does not change the its scalability or structure.
The aforementioned features are in fact available in the implementation we use.

3.1. Complexity

The computational cost of one epoch (lines 6–21) is O(DN+K2 +K3
∑D
i=1 Si).

As shown above, J from eq. (5) is the same for each column, therefore its cal-
culation is needed only once for each M (i) matrix, which takes O(DK2) time
(see eq. (6)). To calculate I from eq. (4) for the jth column, we need the pre-
computed J , as well as O(N+

j K
2) steps, where N+

j is the non-zero elements

in T with fixed j dimension (the cardinality of the set in line 12). Although,
the first sum of eq. (4) runs over all entities of all but one dimension of T ,
W ′j1,...,ji−1,j,ji+1,...,jD

was constructed to be zero unless the respective element
of T is non-zero. To compute the partial derivative of the loss function with
respect to a column of the non-fixed matrix M (i), we also need O (see eq. (3)).
It is calculated in O(N+

j K) time because most of Tj1,...,ji−1,j,ji+1,...,jD are zero.
Finally, we have to compute the actual feature vector that requires the inversion
of a K × K matrix (O(K3)). After all columns of the matrix are recomputed
M(i) also needs to be recomputed that takes O(SiK

2) time.
Summing these complexities for one M (i) matrix we need O(SiK

3 +DK2 +∑Si

j=1N
+
j

(
K +K2

)
+ SiK

2) time that can be simplified to O(N+K2 + SiK
3)

(assuming that D � Si � N+, that is the case when the data is not too sparse).

Summing this cost for all matrices we get O(DN+K2 + K3
∑D
i=1 Si), which is

cubical in K, the number of features, and linear in N+, the number of non-

zero elements of the tensor. In practical cases DN+ �
∑D
i=1 Si (i.e. the data

is not too sparse5), therefore the first term is dominant, thus the method scales
quadratically in K for smaller K values (also common in practice; see section 6.2
for actual running time measurements).

3.2. Application to implicit feedback based context-aware
problems

In order to apply the algorithm to the implicit feedback based context-aware
recommendation problem, all we need to do is to create T and W tensors, based
on the training data. The training data contains the interactions of the users
and items, and the context of these interactions. First, we should select the
context-dimensions to be used. We may also transform or combine the original
contextual attributes to derive new attributes (e.g. seasonality from timestamps,

5 DN+ =
∑D

i=1 Si means that we only have one event/example for each user, for each item
and each context-state. In this case, CF method are not applicable due to sparseness.
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see Section 5.1.1). Then, the transformed training data contains tuples of D
length. Tu,i,c3,...,cD is 1 if the training data contains the tuple (u, i, c3, . . . , cD).
Multiple occurrences of the same tuple does not modify the value. Every other
elements of T are set to 0. The elements of W corresponding to the zero elements
of T are set to w0. An empirically good choice for w0 is 1. The rest of the elements
of W should be set to a greater value than w0. In practice, it usually works well
if these cells are set α · #(u, i, c3, . . . , cD), that is the number occurrences of
the corresponding tuple in the training data multiplied by a constant (we use
α = 100 in the experimentation).

This representation of the problem intuitively means that users prefer items
they already interacted against unseen items. However, we are more certain in the
former, because an interaction is (a somewhat noisy) sign of preference, while
the absence of an interaction does not necessarily mean dislike. The uniform
weighting of missing feedback used here is conform to the (implicit version) of
missing data completely at random (Little & Rubin 1987) assumption. However,
different weighting schemes (e.g. activity based, category based, etc.) can be
easily applied without degrading scalability and thus the algorithm can be made
conform with the missing at random or the missing at not random assumptions.
The application of such weighting schemes is outside of the scope of this paper.

The scalability of the algorithm is good for this problem, because the number
of non-zero elements in T equals to the number of (unique) events in the training
data. This is very beneficial, because training data is usually very sparse (density
is usually < 1%). Although, the training time also depends on the number of
entities in each dimension (e.g. users, items, etc.), the dominant member of the
complexity (for smaller K values) is K2N+ and thus the training time is linear
in the size of the training data.

3.3. iTALSx – a variant with pairwise preference model

A variant of iTALS using pairwise preference model is called iTALSx (Hidasi
2014). Here the elements of T are approximated by a pairwise interaction model
instead of the elementwise (n-way) product. The model is similar to the one used
in (Rendle & Schmidt-Thieme 2010) and (Rendle 2012), however, its extension
to D dimensions does not contain the pairwise interactions between context
dimensions:

T̂i1,i2,...,iD = 1T (M
(1)
i1
◦M (2)

i2
+M

(1)
i1
◦M (3)

i3
+ . . .+M

(1)
i1
◦M (D)

iD
+

+M
(2)
i2
◦M (3)

i3
+ . . .+M

(2)
i2
◦M (D)

iD
).

(7)

The altered preference model requires different decomposition steps to be
computationally efficient. iTALSx performs better if the number of features is
lower or if the dataset is very sparse (i.e. few events, lots of items and users), but
it falls behind iTALS if K or the number of events is sufficiently high (Hidasi
2014).

4. Approximate solutions for ALS

Recall that except for the matrix inversion, ALS based algorithms scales quadrat-

ically with K. For iTALS, the DN+K2 term dominates the K3
∑D
i=1 Si term
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in the complexity when we use low-factor models, when DN+ �
∑D
i=1 Si. The

computation of the cubical term can still take a long time, especially with higher
K values or more context dimensions. Therefore, we introduce two approximate
solutions and adapt them to iTALS to further reduce its time complexity: iTALS-
CD applies the coordinate descent learning for iTALS, while iTALS-CG adapts
the conjugate gradient descent method. The adaptations are generalizations of
the techniques proposed for matrix factorization in (Pilászy et al. 2010) and
(Takács et al. 2011). This generalization is not exclusive to iTALS, other ALS
based factorization algorithms can benefit from the direct application of these
methods. The approximate methods are presented with iTALS, using it as an
example. They can be easily applied to other methods using similar steps.

We will show that the approximate variants provide a trade-off: they can
achieve lower running times (see Section 6.2) in exchange for somewhat higher
loss function values. Note that higher loss function values are not necessarily
translated to lower accuracy in recommendations when one applies other, non-
error based metrics (classification or ranking metrics) for the evaluation (see
Section 6.1).

4.1. Coordinate descent

The coordinate descent (CD) approach approximates the feature vector by com-
puting its coordinates separately. CD approximates the least squares solution of
a b = Ax linear system (seeking x). By fixing all but one feature and comput-
ing the remaining one, the matrix inversion can be avoided (it is reduced to a
division) thus the computation time can be greatly reduced (see Algorithm 4.1).
Note that while the solution provided by CD can be good enough, it does not
converge to the least squares solution.

Algorithm 4.1 Weighted coordinate descent method

Input: A: NE ×K matrix of input examples; b: output for the examples; x(0):
initial solution; w: vector of weights; λ: regularization coefficient; NI : number of
iterations
Output: x: approximate solution of Ax = b
procedure Solve-weighted-CD(A, b, x0, w, λ, NI)

1: x← x(0)

2: for i = 1, . . . , NI do
3: for j = 1, . . . , NE do

4: ∆xj ←
AT

j (w◦b)−λxj

AT
j (w◦Aj)+λ

5: xj ← xj + δxj
6: end for
7: end for
8: return x

end procedure

The biggest difficulty to adapt CD to the iTALS framework (or to any other
complex models) is posed by the extremely high number of examples that corre-
sponds to the number of rows of A. This quantity is the product of the sizes of

all but one dimension, that is NE =
∏D
j=1,j 6=i Sj , when the feature vector of the
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Compression step:

Negative examples:

elementwise products of 

feature vector pairs

(e.g.: all item-context pairs)

p0: Output for negative

examples (0 by default)

C(i), can be computed

efficiently

O(i), can be computed

efficiently

S2S3p0 (0 by default)

=

Compressed negative

examples: L(i)

Outputs for the

compressed examples: 

(b(i))T

Cholesky

decomposition

L’(i)

(L’(i))T

Fig. 2. Concept of the compression of negative examples in the 3 dimensional
user–item–context setting.

ith dimension is sought. This quantity can be greatly reduced by compressing
the information of the negative feedbacks as shown next (also see figure 2):

– Compute the shared part of eq. (4): C(i); and O(i). Note that C(i) is in fact the
covariance of all possible negative examples (i.e. the Hadamard product of all
combinations of feature vectors from all but the ith dimension). Similarly O(i)

is the covariance with the output, but since missing events are represented
by zeroes in the tensor, O(i) is a vector of zeroes.

– O(i) is appended to C(i) from the right and
(
O(i)

)T
from the bottom. Thus

we get a (K+ 1)× (K+ 1) sized matrix: C ′(i). The (K+ 1,K+ 1) element of

C ′(i) is set to p0
∏D
j=1,j 6=i Sj , where p0 is the value associated with the nega-

tive preference (p0 = 0 by default). C ′(i) is symmetric and positive definite.
This step is needed because the input and the output must be compressed
simultaneously.

– C ′(i) is decomposed into L′(i)
(
L′(i)

)T
using Cholesky decomposition. L′(i) is

a lower triangular matrix. The decomposition requires O(K3), but has to be
computed only once per recomputing a feature matrix.

– The columns of L′(i) are the compressed negative examples. The first K
coordinates of a column form the example and the last coordinate is the
output for that input.

The number of examples for the negative feedback was compressed into K+1
examples, that is shared for every feature vector of the ith matrix. For the jth

feature vector we also need the positive feedback for the jth entity, but their
number is low (N+

j ), therefore the coordinate descent method can be computed
efficiently.
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Algorithm 4.2 iTALS using coordinate descent for speedup

Input: T : a D dimensional S1 × · · · × SD sized tensor of zeroes and ones; W : a
D dimensional S1 × · · · × SD sized tensor containing the weights; K: number of
features; E: number of epochs; λ: regularization coefficient; NI : number of inner
iterations of the CD method
Output: {M (i)}i=1,...,D K × Si sized low rank matrices
procedure iTALS(T , W , K, E, λ, NI)

1: for i = 1, . . . , D do
2: M (i) ← Random K × Si sized matrix
3: M(i) ←M (i)(M (i))T

4: end for
5: for e = 1, . . . , E do
6: for i = 1, . . . , D do
7: C(i) ← w0M(1) ◦ · · · ◦M(i−1) ◦M(i+1) · · · ◦M(D)

8: O(i) ← 0
9: C ′(i) ← append O(i) to C(i) from right and

(
O(i)

)T
from bottom

10: C
′(i)
K+1,K+1 ← 0

11: L′(i)
(
L′(i)

)T ← Cholesky-decomposition(C ′(i))

12: L(i) ← strip the last row of L′(i)

13: b(i) ← the last row of L′(i) transposed
14: for j = 1, . . . , Si do
15: L(i,j) ← L(i)

16: b(i,j) ← b(i)

17: w(i,j) ← vector of w0 values; same length as b(i,j)

18: for all {t | t = Tj1,...,ji−1,j,ji+1,...,jD , t 6= 0} do
19: w′t ←Wj1,...,ji−1,j,ji+1,...,jD − w0

20: v ←M
(1)
j1
◦ · · · ◦M (i−1)

j1−1
◦M (i+1)

ji+1
◦ · · · ◦M (D)

jD

21: L(i,j) ← append v to L(i,j) from right
22: b(i,j) ← append 1 to b(i,j)

23: w(i,j) ← append w′t to w(i,j)

24: end for
25: M

(i)
j ← Solve-weighted-CD(L(i,j), b(i,j), M

(i)
j , w(i,j), λ, NI)

26: end for
27: M(i) ←M (i)(M (i))T

28: end for
29: end for
30: return {M (i)}i=1,...,D

end procedure

Algorithm 4.2 shows the pseudocode for iTALS-CD. It is identical with algo-
rithm 3.1 until line 8. In lines 9–13 the negative examples are compressed. We also
need a weight vector because we optimize for wRMSE (line 17). Updating steps
of this matrix and vectors with positive examples are executed in lines 18–24.

The solution for M
(i)
j is computed in line 25 using a weighted coordinate descent

method (see Algorithm 4.1). The signature of the solver is Solve-weighted-
CD(A, b, x0, w, λ, NI), where the linear system is ATx = b, x0 is an initial
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solution, the error is weighted by weight vector w as (
∣∣∣∣w ◦ (b−ATx)∣∣∣∣), λ is the

regularization parameter and NI is the number of iterations.
The complexity of computing the ith matrix consists of the following parts:

computing C(i) in O(K2D), L′(i) in O(K3), the computation of all positive
examples in O(N+K), optimizing using CD6 in O(NI(SiK

2+N+K)) and finally
recomputingM(i) in O(SiK

2) time. This sums up to O(K3+NISiK
2+NIN

+K)
for the ith matrix (assuming that D � NISi). Therefore the cost of one epoch

is O(DK3 +NIK
2
∑D
i=1 Si +DN+NIK). Comparing this to the complexity of

iTALS (O(DN+K2 + K3
∑D
i=1 Si)) we can observe that iTALS-CD also scales

cubically in K, however, the coefficient is reduced from
∑D
i=1 Si to D. The other

two terms are similar, however there is NIK
2 and NIK in the place of K3 and

K2. In practice, when NI � K and D is low, for smaller K values it scales

linearly in K because DN+ �
∑D
i=1 Si.

4.2. Conjugate gradient

The conjugate gradient (CG; (Hestenes & Stiefel 1952)) method is the state-of-
the-art iterative method for solving Ax = b type systems of linear equations,
where A is symmetric positive definite (see Algorithm 4.3). The geometric in-
terpretation of CG is that first a direction is selected in which the error can
be reduced the most. In the following iterations the algorithm selects the best
direction that is pairwise conjugate to every previous direction.

Algorithm 4.3 Conjugate gradient method

Input: A: K×K symmetric positive definite matrix; b: output vector; x(0): initial
solution; M : preconditioning matrix (e.g.: diag(A)); NI : number of iterations
Output: x: approximate solution of Ax = b
procedure solveCG(A, b, x0, M , NI)

1: r(0) ← b−Ax(0)
2: z(0) ←M−1r(0)

3: p(0) ← z(0)

4: for i = 0, . . . , NI − 1 do

5: α(i) ← (r(i))T z(i)

(p(i))TAp(i)

6: x(i+1) ← x(i) + α(i)p(i)

7: r(i+1) ← r(i) − α(i)Ap(i)

8: z(i+1) ←M−1r(i+1)

9: β(i) ← (z(i+1))T r(i+1)

(z(i))T r(i)

10: p(i+1) ← z(i+1) + βipi
11: end for
12: return x(NI)

end procedure

iTALS-CG approximates the feature vectors by replacing M
(i)
j = (C(i,j) +

6 The complexity of algorithm 4.1 is O(NENIK) that is O
(

(K2 + N+
j K)NI

)
in our case for

one feature vector.
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λI)−1O(i,j) in line 18 of algorithm 3.1 with solveCG(A, b, x0,M) with A =
C(i,j) + λI, b = O(i,j), x0 = 0 and M = diag (C(i,j) + λI). The pseudocode
of the conjugate gradient method is presented in Algorithm 4.3. The conju-
gate gradient method converges to the exact solution in at most K steps. If
NI = K it provides the exact solution, however it is often sufficient to run fewer
inner iterations for a good solution. The bottleneck of the CG method is the
matrix-vector multiplication with A and the inversion of M in each iteration
(see Algorithm 4.3).

Here A = C(i,j) +λI = C(i) +
∑k=1
N+

j
Wtvkv

T
k +λI and we use the Jacobi pre-

conditioner (M = diag(A) = diag (C(i,j) + λI)). With careful implementation
the matrix-vector multiplication takes O(K2 +N+

j K) time and the inversion of

the diagonal M matrix takes O(K) time. Therefore it takes O(NIN
+
j K+NIK

2)

time to compute a feature vector. This sums up to O(NIN
+K+SiNIK

2) for re-
computing one matrix instead of O(SiK

3), the complexity of the exact method.

Therefore the total complexity of iTALS-CG is O(DN+NIK +NIK
2
∑D
i=1 Si).

Note that for iTALS-CG I is not needed only J (line 15 can be omitted from
algorithm 3.1 when using the CG solver). Therefore the term DN+K2 can
be omitted from the computation time as well. If NI � K iTALS-CG scales
quadratically in the number of features (instead of cubically) in theory. In prac-

tice (DN+ �
∑D
i=1 Si) it scales linearly (instead of quadratically) with the

number of features for small K values. However, if NI ≈ K then its complexity
is the same as of the exact iTALS. Since there are differences in the constant
multipliers, iTALS-CG in fact can be slower than the exact iTALS in this case.

5. Experimental setup

We used five genuine implicit feedback data sets to evaluate our algorithm. Three
of them are public (LastFM 1K, (Celma 2010); TV1, TV2, (Cremonesi & Turrin
2009)), the other two are proprietary (Grocery, VoD7). The properties of the
data sets are summarized in Table 1. The column “Multi” shows the average
multiplicity of user–item pairs in the training events.8 The train–test splits are
time-based: the first event in the test set falls chronologically after the last event
of the training set. The length of the test period was selected to be at least one
day, and depends on the domain and the frequency of events. We used the artists
as items in LastFM.

Our primary evaluation metric is recall@20. The reason for using recall@N
is twofold: (1) we found that in live recommender systems recall usually corre-
lates well with click-through rate (CTR), that is, an important online metric for
recommendation success. (2) As described in (Hidasi & Tikk 2012), recall@20
is a good proxy of estimating recommendation accuracy offline for real-world
applications; similar finding is available in (Liu et al. 2012). Recall is defined as
the ratio of relevant recommended items to relevant items. An item is considered

7 Data was collected by the service provider of an online grocery store and a vod store respec-
tively, by monitoring the purchases in the system. There were no recommender systems active
during the data collection period.
8 This value is 1.0 at TV1 and TV2. This is possibly due to preprocessing by the original
authors that removed duplicate events.
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Table 1. Main properties of the data sets

Dataset Domain
Training set Test set

#Users #Items #Events Multi #Events Length

Grocery E-grocery 24947 16883 6238269 3.0279 56449 1 month
TV1 IPTV 70771 773 544947 1.0000 12296 1 week
TV2 IPTV 449684 3398 2528215 1.0000 21866 1 day
LastFM Music 992 174091 18908597 21.2715 17941 1 day
VoD IPTV/VoD 480016 46745 22515406 1.2135 1084297 1 day

relevant for a user (and context-state) if there is an event in the test data with
the given user and item (and context-state). An item is recommended if it is
ranked in the top N = 20 based on its predicted preference value (i.e. r̂). Recall
does not take into account the position of an item on the recommendation list.
We estimate that users are exposed to 20 recommendations in average during a
visit (e.g. 4 pageviews, 5 items per recommendation), therefore we choose cutoff
at 20. In a practice recommended items are usually randomly selected from the
first N elements of the ranked item list, a N = 20 is a typical value. In our
setting, a recommendation is therefore successful if it is among the top N items.
Therefore recall@N suits the offline evaluation of recommender algorithms from
the practical viewpoint.

The hyperparameters of the base algorithm, such as regularization coeffi-
cients were optimized on a part of the training data (validation set). Then the
algorithm was trained on the whole training data (including the validation set)
and recall was measured on the test set. The approximate versions used the
same regularization coefficient as the corresponding base method. It is possible
that there exists a better configuration of hyperparameters for the approximate
versions, but keeping the parameters the same enables fair comparison, and we
found that these configurations fit also quite well for the approximate learning
methods. The number of epochs was set to 10 in all cases, because all methods
converge in at most 10 epochs.

5.1. Context dimensions

We used the 3 dimensional (D = 3) version of the context-aware algorithms.
Two kinds of derived context dimensions were used (separately). These context
dimensions are seasonality and sequentiality. Each algorithm is used once with
seasonality and once with sequentiality on every dataset. Both contexts can be
derived for any dataset that has timestamp associated with its events. Addi-
tionally, the two contexts are rather different and capture different aspects of
the data. Their applicability to most datasets makes them ideal subject for our
experiments.

5.1.1. Seasonality

Many application areas of recommender systems exhibit the seasonality effect,
because periodicity can be observed in many human activities. Therefore seasonal
data is an obvious choice for context (Liu et al. 2010). First we have to define
the length of the season. Within a season we do not expect repetitions in the
aggregated behavior of users, but we expect that at the same time offset in
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different seasons, the aggregated behavior of the users will be similar. The length
of the season depends on the data. Once we have this, within seasons we need to
create time bands (bins) that are the possible context-states. Time bands specify
the time resolution of a season, which is also data dependent. We can create time
bands with equal or different length. In the final step, events are assigned to time
bands according to their time stamp.

For Grocery we defined a week as the season and the days of the week as the
time bands. The argument here is that people usually do shopping on weekly or
biweekly basis and that shopping habits differ on weekends and weekdays. One
day was used as season for the other four data sets with 4 hour intervals. We
note that one can optimize the lengths and distribution of time bands but this
is beyond the scope of the current paper.

5.1.2. Sequentiality

In some domains, like movies or music, users consume similar items. In other do-
mains, like electronic gadgets or e-commerce in general, they avoid items similar
to what they already consumed and look for complementary products. Sequential
patterns can be observed on both domain types. Sequentiality was introduced
in (Hidasi & Tikk 2012) and uses the previously consumed item by the user as
a context for the actual item. This information helps in the characterizations of
repetitiveness related usage patterns and sequential consumption behavior.

During evaluation we fix the sequential context to the item that was targeted
by the last transaction of the user in the training set. Thus we do not use infor-
mation from the test data during the evaluation. The other way (i.e. constantly
update the context value based on test events) would be valid as well and would
result in better results. Because the test data spans over a short period of time
that generally contains a few purchasing sessions for the users, preferences thus
can be accurately predicted also from this information.

6. Comparison of learning methods

In this section we compare ALS, ALS-CG and ALS-CD w.r.t. recommendation
accuracy, training times and convergence. We also determine the number of inner
iterations based on trade-offs between running time and accuracy. We use three
algorithms — iTALS, iTALSx and iALS (Hu et al. 2008) — with all three learning
methods. As we mentioned before, the generalization of CG and CD learning for
complexD dimensional models makes it possible to use these speed-up techniques
for every ALS-based factorization.9

6.1. Recommendation accuracy

Table 2 shows recommendation accuracy in terms of recall@20 the for three
algorithms (iTALS, iTALSx and iALS) with seasonality and sequentiality using
various number of features. The number of inner iterations was set to 2 for both
CG and CD.

9 The actual speed-up and improvement in scalability depend on the efficiency of certain key
steps (e.g. matrix-vector multiplication for CG). These may differ from algorithm to algorithm.
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Dataset #Features
Seasonality Sequentiality

ALS ALS-CG ALS-CD ALS ALS-CG ALS-CD

Grocery
40 0.1071 0.1065 0.1043 0.1339 0.1304 0.1317
80 0.1146 0.1193 N/A 0.1439 0.1381 0.1426
200 0.1312 0.1342 N/A 0.1570 0.1485 0.1540

TV1
40 0.1235 0.1194 N/A 0.1515 0.1521 0.1518
80 0.1167 0.1147 N/A 0.1553 0.1511 0.1483
200 0.1055 0.1063 N/A 0.1517 0.1520 0.1505

TV2
40 0.2001 0.2004 0.1972 0.3103 0.3066 0.3094
80 0.2123 0.2102 N/A 0.2957 0.2974 0.2961
200 0.2184 0.2111 N/A 0.2821 0.2848 0.2847

LastFM
40 0.0888 0.1040 0.0909 0.1657 0.1605 0.1579
80 0.1290 0.1417 N/A 0.1864 0.1796 0.1780
200 0.1382 0.1970 N/A 0.1784 0.2044 0.2045

VoD
40 0.0909 0.0913 0.0910 0.1380 0.1372 0.1347
80 0.0996 0.1002 0.0990 0.1723 0.1720 0.1627
200 0.1026 0.1036 0.1023 0.2116 0.2111 0.2092

(a) Results with iTALS

Dataset #Features
Seasonality Sequentiality

ALS ALS-CG ALS-CD ALS ALS-CG ALS-CD

Grocery
40 0.1164 0.1208 0.1135 0.1299 0.1272 0.1283
80 0.1406 0.1445 0.1340 0.1431 0.1385 0.1411
200 0.1927 0.1915 0.1842 0.1655 0.1531 0.1610

TV1
40 0.1127 0.1077 0.1043 0.1417 0.1410 0.1414
80 0.0942 0.0858 0.0905 0.1295 0.1309 0.1295
200 0.0696 0.0650 0.0688 0.1106 0.1098 0.1104

TV2
40 0.2312 0.2274 0.2195 0.2866 0.2846 0.2856
80 0.2223 0.2130 0.2117 0.3006 0.3017 0.2986
200 0.1791 0.1741 0.1807 0.3023 0.3067 0.3079

LastFM
40 0.0599 0.0691 0.0507 0.1869 0.1830 0.1859
80 0.0928 0.0773 0.0708 0.1984 0.1966 0.1929
200 0.1264 0.0907 0.0922 0.2003 0.2007 0.2006

VoD
40 0.0916 0.0931 0.0927 0.1068 0.1073 0.1068
80 0.0990 0.0999 0.0986 0.1342 0.1345 0.1347
200 0.0977 0.0980 0.0970 0.1726 0.1732 0.1728

(b) Results with iTALSx

Dataset #Features ALS ALS-CG ALS-CD

Grocery
40 0.0714 0.0745 0.0814
80 0.0861 0.0919 0.0966
200 0.1281 0.1298 0.1237

TV1
40 0.1111 0.1072 0.1074
80 0.0926 0.0899 0.0937
200 0.0769 0.0712 0.0799

TV2
40 0.2161 0.2043 0.2162
80 0.2145 0.1906 0.2140
200 0.1958 0.1702 0.1894

LastFM
40 0.0623 0.0545 0.0467
80 0.0922 0.0902 0.0574
200 0.1199 0.1204 0.0453

VoD
40 0.0758 0.0779 0.0758
80 0.0884 0.0889 0.0878
200 0.0928 0.0921 0.0918

(c) Results with iALS

Table 2. Recommendation accuracy with various learning methods.
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Method
Performs
similarly

Underperforms Outperforms Fails Total

CG 58 (77.33%) 11 (14.67%) 6 (8%) 0 (0%) 75 (100%)
CD 54 (72%) 9 (12%) 3 (4%) 9 (12%) 75 (100%)

Table 3. Overview of the relation of approximate methods to ALS. Similar per-
formance means that the difference in recall@20 is lower than 5%.

Method Insignificant
difference

Worse
than ALS

Better
than ALS

Fails Total

CG 29 (38.67%) 28 (37.33%) 18 (24%) 0 (0%) 75 (100%)
CD 32 (42.67%) 26 (34.67%) 8 (10.67%) 9 (12%) 75 (100%)

Table 4. Summary of statistical significance tests comparing CG and CD to ALS.
(p = 0.05)

Some values are missing from the table, because the training with CD some-
times failed. One can observe that CD is somewhat unstable if there are n-way
(n > 2) interactions in the preference model, the size of any of the interacting
dimensions is low and the number of features is high. Additional experiments
with different preference models confirmed this disadvantage.

The recommendation accuracy of ALS and the approximate methods are usu-
ally very similar. There are some exceptions with moderate differences. Although
the value of the loss function (wRMSE) is correlated with the evaluation met-
ric (recall), there is no direct connection between them. Thus the approximate
methods can outperform the exact ALS. There are only a few examples where
the difference in the accuracy is considerable, but there is no clear trend on the
characteristics of these examples.

For overview on the relation of the approximate methods to ALS see Table 3.
Since small differences in recall usually do not increase practical accuracy, a
threshold of 5% was set. We consider a method considerably better than an
other if its recall is by at least 5% larger. CG performs slightly better than CD
w.r.t. recommendation accuracy similarity to the exact method (58 and 54). CG
also has more (considerably) outperforming results compared to the exact ALS
than CD (6 and 3). The number of underperforming cases is roughly the same
for CG and CD (11 and 9). If there is any appreciable difference vs. ALS, CD
usually exhibits lower performance (9 of 12), while CG outperforms ALS in more
than one third of the cases (6 of 17).

Besides examining if differences between methods are considerable, we also
checked if the differences are statistically significant. The test set was split into
10 parts randomly. The number of relevant and recommended items (i.e. the
nominator of recall) was measured for all parts.10 Then paired t-test was used
to compare the methods with p = 0.05. Table 4 contains the aggregated results.
The trends are similar as in Table 3: CD underperforms ALS in slightly more
cases than CG does; and CG has more over performances than CD.

We also combined both comparison methodologies; Table 5 depicts the re-
sults. The table is very similar to Table 3, there are only a few considerably
different cases that are not significantly different.

We can thus summarize that from the recommendation accuracy point of

10 With fixed list length and test set these values are proportional to the recall@20 value.
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Method
Performs
similarly

Underperforms Outperforms Fails Total

CG 62 (82.67%) 10 (13.33%) 3 (4%) 0 (0%) 75 (100%)
CD 57 (76%) 7 (9.33%) 2 (2.67%) 9 (12%) 75 (100%)

Table 5. Comparing CG and CD to ALS when differences should be both con-
siderably and statistically significantly better.

view, both approximate learning methods are on par with the original ALS.
However, due to its stability and somewhat better accuracy, CG is the more
appropriate choice than CD in general. Let us investigate how much one can
gain on the training time with the approximate methods, since this can justify
the use of an approximate method.

6.2. Running time

Figure 3 depicts the time required to run one epoch (i.e. computing each feature
matrix once) of iTALS with ALS, CG and CD with different number of features
using the VoD dataset. The number of inner iterations was set to 2 for CG
and CD. The results provide underpinning for our earlier statements about the
practical scaling of the methods in the number of features. It is clear that both
approximate methods scale better than the exact ALS. The speed-up factor is
∼ 10.6 for CG and ∼ 2.9 for CD if K = 200 (and it becomes even greater for
larger K values). For the more commonly used K = 80, the speed-up is ∼ 3.5
and ∼ 1.3 for CG and CD, respectively. As expected, with few features (e.g.
K = 20), due to the computational overhead the approximate methods can be
somewhat slower than the exact ALS. Summarizing: for low factor models, ALS
can be an appropriate learner, while for higher factors, ALS-CG and ALS-CD
offer considerable speed-up.

For high factor models, CG is significantly faster than CD. CD starts scaling
super-linear much earlier (around K = 100 in this example) than CG (still linear
for K = 200) and also starts off with a steeper scaling graph. The speed-up from
CD to CG for K = 80 and K = 200 is ∼ 2.6 and ∼ 3.8, respectively.

6.3. Number of inner iterations

The number of inner iterations is an important parameter of the approximate
methods. Generally, the larger this value is, the more accurate the algorithms
are at the cost of the increased training times. In this section we determine a
good choice of this value by analyzing the trade-off between training time and
accuracy.

Figure 4 compares the accuracy of CG and CD to ALS with different numbers
of inner iterations. We selected two examples: one where CG and CD approxi-
mates ALS well in Table 2 (iTALSx, LastFM, sequentiality, K = 80); and one
where they don’t (iTALSx, LastFM, seasonality, K = 80). With other experi-
ments, we observed very similar results (not shown here). We also note that the
former case is more common than the latter.

In the first example, both approximate methods start from a lower value at
NI = 1. From there, their accuracy is gradually increased and CG improves
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Fig. 3. Running times of one epoch of different learning methods (ALS, CD, CG)
with iTALS w.r.t. different number of feature (K) values, using one CPU core
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Fig. 4. Recommendation accuracy with different number of inner iterations for
CG and CD learning; value for LS solver is shown for comparison

slightly faster. CG and ALS compute exactly the same features if NI = K. Thus
CG converges to ALS as the number of inner iterations increases. They also yield
the same accuracy if K is sufficiently high (20 in this case). On the other hand,
CD does not converge to ALS, but gives quite similar accuracy values. It reaches
the accuracy of ALS around the same NI = 20 as well, and one can observe
very slight variance of accuracy for NI > 20. At NI = 80 the accuracy becomes
even slightly better than that of ALS. This is not a general behavior of CD, but
as it does not converge to the exact ALS, sometimes it can give slightly better
results. Note that CG can also outperform ALS (as shown in Table 2), but only
by low NI values. Even is CG starts off with a higher accuracy than ALS, by the
increasing NI it converges to ALS. CD can, however, theoretically outperform
ALS at any NI values.

In the second example, there is a larger difference between accuracy values
of the approximate and the exact learning. CG has a relatively high accuracy
at NI = 1, but this is not a general behavior by any means. From NI = 2,
the accuracy of CG starts increasing monotonously and reaches that of the ALS
around NI = 20. On the other hand, the accuracy of CD varies throughout and
it never even approaches that of the ALS.

Our experiments show that the fact that CG converges to ALS can equally
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Fig. 5. Running times with different number of inner iterations compared to that
of the LS solver

be favorable or can be a limit. On one hand it attests to the stability of the
method, on the other hand, in some cases CD can outperform both ALS and
CG. In practice, however, such a case is not typical (see Table 2), thus we can
conclude that the convergence of CG is useful.

Figure 5 compares the training times of CG and CD to ALS by different NI
values. The experiment used iTALSx, LastFM, sequentiality and K = 80. We
note that the results are very similar with other settings.11 CG scales significantly
better with NI than CD. CD reaches the training time of ALS around NI =
3 . . . 4, that is only ∼ 4 − 5% of K. CG reaches the training time of ALS much
later, around NI = 15, that is ∼ 19% of K.

Approximate methods are used to speed up the training. Therefore such NI
should be used when the training time is significantly less. Our experiments
suggest that this value is 1 . . . 2 for CD and 1 . . . 10 for CG if K = 80. For
different K values these intervals change relative to K. Generally, NI = 1 is bad
a choice due to low accuracy (see Figure 4 for example), therefore NI should be
at least 2. Table 2 shows that NI = 2 is usually a good choice as the accuracy of
ALS is usually well approximated. Larger NI values are not advised for CD due
to its poor scaling with NI . For CG, NI values up to 10–15% of K still result in
considerable speed up, but usually small values (2 . . . 5) are sufficient.

6.4. Convergence of accuracy

Figure 6 compares the accuracy of ALS, CG and CD (with 2 and 5 inner iter-
ations each) after each recomputation of any feature matrix (i.e. their conver-
gence w.r.t. accuracy). We investigate two cases: (1) when ALS converges faster
(iTALSx, LastFM, sequentiality, K = 80), (2) when ALS converges more slowly
(iTALS, VoD, sequentiality, K = 40). If ALS converges slowly then approximate
methods can keep up and converge with basically the same speed. If the con-
vergence of ALS is faster, approximate methods with NI = 2 are initially less
accurate, but achieve the same results after a few epochs. When the number of

11 In the following sense: NI values relative to the number of features. That is, if K is
lower/higher then approximate methods reach the training time of ALS at lower/higher NI

values.
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Fig. 6. Accuracy of ALS, CG and CD methods (2 and 5 inner iterations) through
epochs. The horizontal axis denotes how far the algorithm is in the computations.
N/X denotes that the algorithm is in the N th epoch and finished computing the
X matrix (X ∈ (U, I, C) as in User, Item and Context feature matrix).

inner iterations is set higher (NI = 5), approximate methods follow ALS quite
nicely.

This suggests that NI = 5 would be a better choice for CG as it follows
ALS more closely. We suggest to use NI = 2 if speed is important, because
one mostly gets similar or better results than with ALS. If one prefers accuracy
against training time then NI = 5 (or higher) can be used. For CD we still
suggest using NI = 2 in every case, because of the fast increase of training time
with larger NI values.

6.5. Size of training data

In real life recommenders it is important to consider how much of the users’ event
history is to be used. Too much data not only increases training time, but it may
mask changes in taste and behavior. On the other hand, using only the recent
events results in noisy training data and does not allow for models that capture
long time interests. The optimal trade-off depends on the domain, the dataset
itself and even the contexts considered. Finding this optimal trade-off is beyond
the scope of this paper. Here we therefore only investigate if the approximate
methods behave similarly to ALS.

Figure 7 shows the accuracy (w.r.t. recall@20) with using different slices of
the training data in three different settings. Although the graph varies from
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features (top right); VoD, iTALS, sequentiality, 200 features (bottom left).

setting to setting, both CG and CD follow ALS closely in all settings. Therefore
we conclude that CG and CD behave similarly to ALS in this aspect as well.

7. Conclusion

The practically important recommendation problems with implicit data are often
solved by ALS-based factorization approaches. We investigated the scalability of
such approaches in the context-aware setting, since in practice, scalability and
training time are of key importance. With efficient implementation, ALS-learning
scales linearly with the number of non-zeroes in the tensor, but cubically with
K, the number of features (for smaller K, it is quadratic in practice). This
prevents the use of more accurate high factor models. Since for ALS-learning
map-reduce technology is not an option for faster training, an alternative solution
was proposed here to offer training speed-up and to overcome the scalability
problem.
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We presented two approximate learning schemes: coordinate descent (CD)
and conjugate gradient (CG) and applied to the complex model of iTALS. We
generalized said approaches to be compliant with every ALS based factorization
method. Both CD and CG scale linearly with the number of features in practice
for lower K values (while CG scales quadratically and CD scales cubically in
theory).

We analyzed the performance of CG, CD, and ALS in terms or recommenda-
tion accuracy, training times, accuracy–training time trade-off and convergence.
In most cases, CG and CD approximate the accuracy of ALS well or even out-
perform it. In other cases, increasing the number of inner iterations can improve
their accuracy at the cost of lower speed. Both approximate methods are much
faster and scale better than ALS, with CG being the faster of the two (more
than 10 times faster than ALS by K = 200). We specified how the preferred
number of inner iterations for CG and CD, offering a good trade-off between
accuracy and speed. We found that CG is generally better than CD. It is more
stable, generally more accurate, converges to ALS as the number of inner iter-
ations increases, it is faster and scales better. On the other hand, CD can also
be advantageous in some cases, because it is not a direct approximation of ALS.
Therefore, CD can still provide good accuracy even if ALS does not work.

We can conclude that the proposed approximate solutions make it possible
to apply ALS-based learning of high factor models efficiently for more complex
context-aware methods. The solutions also offer trade-off between recommenda-
tion accuracy and speed training time.
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Takács, G., Pilászy, I. & Tikk, D. (2011), Applications of the conjugate gradient
method for implicit feedback collaborative filtering, in ‘RecSys’11: ACM Conf.
on Recommender Systems’, pp. 297–300.
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